PAAVAI ENGINEERING COLLEGE, NAMAKKAL – 637 018

(AUTONOMOUS)

M.E. STRUCTURAL ENGINEERING

REGULATIONS 2016

CURRICULUM

(CHOICE BASED CREDIT SYSTEM)

SEMESTER I

Course Code	Course Title	L	Т	Р	С
PMA16101	Advanced Mathematical methods	3	2	0	4
PSE16101	Structural Dynamics	3	2	0	4
PSE16102	Theory of Elasticity and Plasticity	3	2	0	4
PSE16103	Advanced Reinforced Concrete Structures	3	2	0	4
PSE1615*	Elective I	3	0	0	3
PSE1625*	Elective II	3	0	0	3

SEMESTER II

Course Code	Course Title	L	Т	Р	C
PSE16201	Advanced Structural Steel Design	3	2	0	4
PSE16202	Aseismic Analysis and Design of Structures	3	2	0	4
PSE16203	Design of Pre-stressed Concrete Structures	3	2	0	4
PSE16204	Finite Element Method	3	2	0	4
PSE35*	Elective III	3	0	0	3
PSE45*	Elective IV	3	0	0	3
PSE16205	Advanced Structural Engineering Laboratory	0	0	4	2

LIST OF ELECTIVES

ELECTIVE I

Course Code	Course Title	L	Т	Р	С
PSE16151	Matrix Methods of Structural Analysis	3	0	0	3
PSE16152	Advanced Concrete Technology	3	0	0	3
PSE16153	Design of Tall Buildings	3	0	0	3
PSE16154	Structural Optimization	3	0	0	3

ELECTIVE II

Course Code	Course Title	L	Т	Р	С
PSE16251	Maintenance and Rehabilitation of Structures	3	0	0	3
PSE16252	Non-linear Analysis of Structures	3	0	0	3
PSE16253	Smart Structures	3	0	0	3

ELECTIVE III (OPEN ELECTIVE)

Course Code	Course Title	L	Т	Р	С
PSE16351	Energy Efficient Structures	3	0	0	3
PSE16352	Structures in Disaster Prone Areas	3	0	0	3
PSE16353	Construction Safety and Management	3	0	0	3
PSE16354	Financial Management	3	0	0	3

ELECTIVE IV

Course Code	Course Title	L	Т	Р	С
PSE16451	Design of Sub Structure	3	0	0	3
PSE16452	Experimental Techniques and Instrumentation	3	0	0	3
PSE16453	Computer Aided Analysis and Design of Structures	3	0	0	3
PSE16454	Design of Bridges	3	0	0	3

SEMESTER I

PMA16101

ADVANCED MATHEMATICAL METHODS

COURSE OBJECTIVES

- To analyze the treatment involved in solving differential equations by means of Laplace transformation.
- To study the significance of the distribution of heat, signals and frequency.
- To familiarize with single and multi-dimensional problems of variation calculus
- To discuss about the suitable transformation of a function in a particular plane to another plane.
- To expose the mathematical applications of vectors and tensor analysis to handle diverse problems.

UNIT I LAPLACE TRANSFORM TECHNIQUES FOR PARTIAL DIFFERENTIAL EQUATIONS

Laplace transform, Definitions, properties – Transform of some simple function, Transform of error function, Dirac Delta function, Unit Step functions – Convolution theorem – Inverse Laplace Transform: Complex inversion formula – Solutions to partial differential equations; Heat equation, Wave equation.

UNIT II FOURIER TRANSFORM TECHNIQUES FOR PARTIAL DIFFERENTIAL EQUATIONS

Fourier transform: Definitions, properties – Transform of elementary functions, Dirac Delta function – Convolution theorem – Parseval''s identity – Solutions to partial differential equations; Heat equation, Wave equation, Laplace and Poisson equations.

UNIT III CALCULUS OF VARIATIONS

Concept of variation and its properties – Euler"s equation – Functional dependent on first and higher order derivatives – Functional's dependant on functions of several independent variables – Variational problems with moving boundaries – Problems with constraints – Direct methods – Ritz and Katorovich methods.

UNIT IV CONFORMAL MAPPING AND APPLICATIONS

Introduction to analytic functions – conformal mappings and bilinear transformations – Schwarz Christoffel transformation – Transformation of boundaries in parametric form – Physical applications; Fluid flow and heat flow problems.

UNIT V TENSOR ANALYSIS

Summation convention – Contravariant and covariant vectors – Contraction of tensors – Innerproduct – Quotient law – Metric tensor – Christoffel symbols – Covariant differentiation – Gradient, divergence and curl.

TOTAL : 75 PERIODS

3204

15

15

15

15

COURSE OUTCOMES

At the end of this course, the students will be able to

- solve the differential equations using Laplace Transform by applying its boundary conditions
- gain knowledge in fourier transform techniques in distribution of heat and signal processing.
- understand the concepts of solving a variational problem using the Euler equation.
- solve fluid flow and heat flow problems using conformal mapping.
- apply the physical applications and simplifications of tensors.

REFERENCES

- 1. Larry C. Andrews, Bhimsen K. Shivamoggi, "Integral Transforms for Engineers", SPIE Optical Engineering press, Washington USA (1999).
- 2. Gupta, A.S., "Calculus of Variations with Applications", Prentice Hall of India Pvt. Ltd., New Delhi, 1997.
- 3. James, G., "Advanced Modern Engineering Mathematics", 3rd Edition, Pearson Education, 2004.
- 4. Ramaniah.G. "Tensor Analysis", S.Viswanathan Pvt. Ltd., 1990.
- 5. SankaraRao, K., "Introduction to Partial Differential Equations", Prentice Hall of India Pvt. Ltd., New Delhi, 1997.
- 6. Spiegel, M.R., "Theory and Problems of Complex Variables and its Application (Schaum's Outline Series)", McGraw Hill Book Co., 1981.
- 7. Lev D. Elsgolc., "Calculus of Variations", Courier Corporation, 2012.
- 8. E. B. Saff, Arthur David Snider., "Fundamentals of Complex Analysis with Applications to Engineering and Science", Prentice Hall, 2003.

WEB LINKS

- 1. https://www.youtube.com/watch?v=DPg5T-YBQjU&list=PL4rxxS6x1HEYp6fYlYHnFZ2AqylTqVmAE
- 2. https://www.youtube.com/watch?v=Vg-EjShqy3M
- 3. https://www.youtube.com/watch?v=GiPOQC5nYMs&list=PL521C2DFD15FF568C
- 4. https://www.youtube.com/watch?v=DxD2Vx39YH8
- 5. https://www.youtube.com/watch?v=Hiaoe7USQd4

	Mapping of course objectives with Programme Outcomes: (1/2/3 indicates strength of correlation) 3- strong,2-Medium, 1-Weak													
	Programme Outcomes (POs)													
Cos	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01 PS02													
CO1	3	3	2	2	-	-	-	-	-	-	-	1	2	3
CO2	3	3	2	3	-	-	-	-	-	-	-	1	2	3
CO3	3	2	2	3	-	-	-	-	-	-	-	1	2	3
CO4	3	2	3	1	-	-	-	-	-	-	-	1	2	3
CO5	3	2	2	2	-	-	-	-	-	-	-	1	2	3

COURSE OBJECTIVES

- To understand the response of structural systems to time-varying dynamic loads and displacements.
- To apply the behaviour and response of linear and nonlinear two degree of freedom structures with various dynamic loading, analysis with viscous dampers.
- To study the behaviour and response of MDOF structures with various dynamic loading. •
- To determine the behaviour of structures subjected to dynamic loads such as wind, earthquake and blast. •
- To compute the different dynamic analysis procedures for calculating the response of structures. •

UNIT I PRINCIPLES OF DYNAMICS

Vibration and its importance to structural engineering problems - Elements of vibratory systems and simple harmonic motion - Generalized mass - D Alembert's principle - Mathematical modelling of dynamic systems -Degree of freedom - Equation of motion for S.D.O.F - Damped and undamped free vibrations - Undamped forced vibration - Critical damping - Response to harmonic excitation - Damped or undamped - Evaluation of damping resonance - band width method to evaluate damping - Force transmitted to foundation - Vibration isolation.

UNITH **TWO DEGREE OF FREEDOM SYSTEMS** 15

Equations of Motion of two degree of freedom systems - Damped and undamped free vibrations - Undamped forced vibration - Normal modes of vibration - Applications.

UNIT III DYNAMIC ANALYSIS OF MDOF

Multi degree of freedom system- undamped free vibrations - Orthogonality relationship - Approximate methods -Holzer - Rayleigh - Rayleigh-Ritz - mode superposition technique - Numerical integration procedure- Central Difference – Newmark's method.

UNIT IV DYNAMIC ANALYSIS OF CONTINUOUS SYSTEMS

Free and forced vibration of continuous systems- axial vibration of a beam- Flexural vibration of a beam -Rayleigh - Ritz method; Formulation using Conservation of Energy; Formulation using Virtual Work.

UNIT V PRACTICAL APPLICATIONS

Idealisation and formulation of mathematical models for wind, earthquake, blast and impact loading; Principles of analysis - Linear and Non-linear.

COURSE OUTCOMES

At the end of this course, the students will be able to

- understand the response of structural systems to dynamic loads and displacements.
- realize the behaviour and response of linear and non-linear SDOF and MDOF structures with various dynamic loading.

15

15

TOTAL : 75 PERIODS

15

- determine the behaviour and response of MDOF structures with various dynamic loading.
- find suitable solution for continuous system.
- understand the behaviour of structures subjected to dynamic loads such as wind, earthquake and blast .

- 1. Anil K.Chopra, "Dynamics of Structures", Pearson Education, 2009.
- 2. Mario Paz, Structural Dynamics, "Theory and Computation", Kluwer Academic Publication, 2004.
- 3. Craig.R.R, "Structural Dynamics An Introduction to Computer methods", John Wiley & Sons, 1989.
- 4. Manickaselvam, V.K., "Elementary Structural Dynamics", DhanpatRai& Sons, 2001.
- 5. Madhujit Mukhopadhyay Structural Dynamics Vibrations and Systems, Ane Books India Publishers, 2010.

WEB LINKS

- 1. http://nptel.ac.in/courses/105101006/
- 2. http://freevideolectures.com/Course/3129/Structural-Dynamics#
- 3. http://onlinelibrary.wiley.com/journal/10.1002/%28ISSN%291096-9845/issues

	Mapping of course objectives with Programme Outcomes: (1/2/3 indicates strength of correlation) 3- strong,2-Medium, 1-Weak													
~	Programme Outcomes (POs)													
Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	-	-	-	2	2	-	-	-	-	-	-	2
CO2	3	2	-	2	I	2	2	-	-	-	-	-	-	2
CO3	3	2	-	-	-	2	2	-	-	-	-	-	-	2
CO4	3	2	-	2	-	2	2	-	-	-	-	-	-	2
CO5	3	2	-	-	-	2	2	-	-	-	-	-	-	2

THEORY OF ELASTICITY AND PLASTICITY

COURSE OBJECTIVES

- To study the classical theory of linear elasticity for two and three dimensional state of stress.
- To obtain solutions for elasticity problems in rectangular and polar coordinates as well as torsion of prismatic bars.
- To introduce the energy principles and energy method of solution of solid continuum mechanics. ٠
- To gain knowledge on torsion of non-circular sections and thin walled sections. •
- To understand the plastic stress strain relations, criteria of yielding and elasto- plastic problems. •

UNIT I ELASTICITY

Analysis of stress and strain, equilibrium equations - Compatibility equations - Stress strain relationship -Generalized Hooke's law.

UNIT II FORMULATION AND SOLUTION OF ELASTICITY PROBLEMS

Methods of formulation of elasticity problems, methods of solution of elasticity problems, Plane stress and plane strain - Simple two dimensional problems in Cartesian and polar co-ordinates.

UNIT III ENERGY METHODS

Numerical and Energy methods - Castiglianos theorem - Principle of Virtual work - Principle of stationary potential energy - Principle of least work - Rayleigh's method - Rayleigh-Ritz method- Finite difference method -Simple applications.

UNIT IV TORSION

Introduction, general solution of torsion problems, boundary conditions, stress function method - Torsion of noncircular sections, Prandtl's membrane analogy, Torsion of thin walled open and closed sections - Thin walled multiple cell closed sections.

UNIT V **INTRODUCTION TO PLASTICITY**

Physical assumptions - Criterion of yielding, plastic stress and strain relationship - Elastic plastic problems in bending; Torsion and thick cylinder.

COURSE OUTCOMES

At the end of this course, the students will be able to

- understand the stresses and strains. •
- determine the solution of elasticity problems. •
- compute the beams and columns deformation using energy methods.
- analyze torsion of non-circular sections and thin walled sections.
- solve problems of plasticity.

15

15

TOTAL : 75 PERIODS

15

15

- 1. Timeshenko.S.P and Goodier.J.N, "Theory of Elasticity", McGraw Hill International Edition, 2010.
- 2. Sadhu Singh, "Theory of Plasticity", Khanna Publishers, 2005.
- 3. Hill.R, "Mathematical theory of Plasticity", Oxford Publishers 1998.
- 4. Sadhu Singh, "Theory of Elasticity and Metal Forming Processes", Khanna Publishers, 2005.
- 5. Chakrabarthy, "Theory of Plasticity", McGraw Hill Co., 2006.

WEB LINKS

- 1. https://www.vidyarthiplus.com/shop/theory-of-elasticity-and-plasticity-premium-lecture-notes-evangeline-edition.html
- 2. https://onderwijsaanbod.kuleuven.be/syllabi/v/e/H08W3AE.htm#activetab=doelstellingen_idp1232512
- http://www.faadooengineers.com/threads/10108-Theory-of-elasticity-and-plasticity-full-notes-ebook-freedownload-pdf

	Mapping of course objectives with Programme Outcomes: (1/2/3 indicates strength of correlation) 3- strong,2-Medium, 1-Weak													
	Programme Outcomes (POs)													
Cos	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01 PS02													
CO1	3	2	-	-	-	2	2	-	-	-	-	-	-	2
CO2	3	2	-	-	-	2	2	-	-	-	-	-	-	2
CO3	3	2	-	-	-	2	2	-	-	-	-	-	-	2
CO4	3	2	-	-	-	2	2	-	-	-	-	-	-	2
CO5	3	3 2 2 2 2												

COURSE OBJECTIVES

- To simplify a standard reinforced concrete building into a number of manageable idealized substructures, structural elements and to construct their load paths.
- To interpret ultimate and serviceability limit state approaches in current structural design philosophy.
- To estimate primary design loads on structural elements such as beams and columns consulting appropriate standards and handbooks.
- To combine primary design load cases as per design standards to find critical load combination that governs design.
- To model building structure and analyze structural elements for design actions such as design bending moment, design shear force and deflections.

UNIT I DESIGN REGULATIONS

Review of limit state design of beams, slabs and columns according to IS code - Serviceability limit states - Deflection and cracking - Calculation of deflection and crack width according to IS Code.

UNIT II DESIGN OF SPECIAL RC ELEMENTS

Design of slender columns - Design of RC walls; Strut and tie method of analysis for corbels and deep beams - Design of corbels, deep-beams and grid floors.

UNIT III FLAT SLABS AND YIELD LINE THEORY

Design of Column-Supported Slabs (with/without Beams) under Gravity Loads - Direct design method - Equivalent frame method - Shear in Column - Supported two-way slabs; Design of spandrel beams; Yield line theory and Hillerborg's strip method of design of slabs.

UNIT IV PLASTIC DESIGN

Limit analysis - Moment redistribution - Codal recommendations for Moment redistribution; Baker's method of plastic design; Design of cast-in-situ joints in frames.

UNIT V DETAILING AND FIELD PRACTICE

Detailing for ductility - Measures of ductility - Flexural yielding in frames and walls - Flexural members in ductile frames - Columns and frame members subject to bending and axial load; Joints in ductile frames; Shear walls; Fire resistance of structural members - Code requirements; Quality control of concrete.

TOTAL : 75 PERIODS

COURSE OUTCOMES

At the end of this course, the students will be able to

- understand and analyze the behaviour of reinforced concrete subjected to flexure, shear and axial loading.
- identify underlying plastic concepts in modern concrete design methods

15

15

15

15

- design reinforced concrete beams, slabs and columns in accordance to IS code.
- enumerate the concept of reinforced concrete, using moment redistribution and Baker"s method.
- produce design calculations and drawings in appropriate professional formats.

- Unnikrishna Pillai and Devdas Menon "Reinforced concrete Design", Tata McGraw Hill Publishers Company Ltd., New Delhi, 2010.
- 2. Varghese, P.C., "Limit State Design of Reinforced Concrete", Prentice Hall of India, 2007.
- 3. Varghese, P.C, "Advanced Reinforced Concrete Design", Prentice Hall of India, 2005.
- 4. Dr.B.C.Punmia, Ashok kumarjain, Arun Kumar Jain, "Limit state design of Reinforced Concrete", Laxmi Publications (P) Ltd, New Delhi, 2007.
- 5. Sinha.N.C. and Roy S.K., "Fundamentals of Reinforced Concrete", S.Chand and Company Limited, New Delhi, 2003.

CODE BOOKS

- IS:13920-1993 Ductile detailing of reinforced concrete structures subjected to seismic forces Code of Practice.
- 2. IS:456-2000 Indian Standard Code of Practice for Plain and Reinforced Concrete.
- 3. SP16-Design Aid for RC to IS 456-1978.

WEB LINKS

- 1. https://www.youtube.com/watch?v=pIdaC_I6H_M
- 2. https://en.wikipedia.org/wiki/Reinforced_concrete
- 3. http://searchworks.stanford.edu/view/317818

	Mapping of course objectives with Programme Outcomes: (1/2/3 indicates strength of correlation) 3- strong,2-Medium, 1-Weak													
~	Programme Outcomes (POs)													
Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	-	2	-	2	2	-	-	-	-	-	-	2
CO2	3	2	-	2	-	2	2	-	-	-	-	-	-	2
CO3	3	2	-	2	-	2	2	-	-	-	-	-	-	2
CO4	3	2	-	2	-	2	2	-	-	-	-	-	-	2
CO5	3	2	-	2	-	2	2	-	-	-	-	-	-	2

SEMESTER II

PSE16201 ADVANCED STRUCTURAL STEEL DESIGN

COURSE OBJECTIVES

- To understand the concepts of limit state design, working stress design and design philosophies of tension and compression members.
- To study the various connections (welded and riveted), seated connections (Unstiffened and Stiffened connections) and to design them.
- To focus on the study and design of steel structures subjected to torsion.
- To study the plastic analysis of steel structures.
- To design concepts of light gauge steel structures.

UNIT I DESIGN METHODOLOGIES

Concept of design methodologies -Philosophies of Limit State Design, Working stress design, LRFD-TENSION MEMBERS: Introduction – net sectional area for concentrically and eccentrically loaded members – tension splices - bending of tension members – stress concentrations; COMPRESSION MEMBERS: Introduction – practical end conditions and effective length factors – elastic compression members – restrained compression members.

UNIT II DESIGN OF CONNECTIONS

Types of connections - Welded and riveted - Throat and root stresses in Fillet welds - Seated connections - Unstiffened and stiffened seated connections - Moment resistant connections - Clip angle connections - Split beam connections - Framed connections.

UNIT III TORSION MEMBERS

Introduction – uniform torsion – non uniform torsion – torsion design – torsion and bending – distorsion.

UNIT IV PLASTIC ANALYSIS OF STRUCTURES

Introduction - shape factor - Moment redistribution - combined mechanisms - analysis of portal frames - Effect of axial force - Effect of shear force on plastic moment; Connections - requirement – Moment resisting connections - Design of straight corner connections - Haunched connections; Design of continuous beams.

UNIT V DESIGN OF LIGHT GAUGE STEEL STRUCTURES

Cold formed light gauge section - Type of cross sections - stiffened - multiple stiffened and unstiffened element - flat width ratio - effective design width - Design of light gauge compression member - Effective width for load and deflection determination - Design of tension members - Design of flexural members - Shear lag - Flange curling.

TOTAL: 75PERIODS

3204

15

15

15

15

COURSE OUTCOMES

At the end of this course, the students will be able to

- design various tension and compression members.
- design different types of steel connections and joints.
- design steel structures subjected to torsion.
- design for plasticity.
- design light gauge steel structures.

REFERENCES

- 1. Subramanian .N, "Design of Steel Structures", Oxford University Press, 2008.
- 2. Dayarathnam.P, "Design of Steel Structures", A.H.Wheeler, India, 2007.
- 3. John E. Lothers, "Design in structural steel", Prentice Hall of India, New Delhi 1990.
- 4. Lynn S. Beedle, "Plastic Design of Steel Frames", John Wiley and Sons, New York 1990.
- 5. Wie Wen Yu, "Design of Cold Formed Steel Structures", McGrawHIll Book Company, New York, 2010.

CODE BOOKS

- 1. IS:800-2007 Indian Standard Code of Practice for general construction in steel (Limit State).
- 2. IS:875 (Part I to V) Code of Practice for Design loads.
- 3. IS:801-1975 Code of practice for use of cold formed light gauge steel structural members in general building construction.
- 4. IS:811 -1987 Cold formed light gauge structural steel sections.
- 5. IS:6533-1989 (Part I & II) Code of Practice for Design and Construction of Steel Chimney.
- 6. IS:802-1977 Code of Practice for use of structural steel in Overhead Transmission Line Towers.
- 7. SP:6 Handbook on Structural Steel Section.

WEB LINKS

- 1. https://engineering.purdue.edu/~ahvarma/CE%20470/
- 2. http://www.learnerstv.com/Free-engineering-Video-lectures-ltv323-Page1.html
- 3. http://peer.berkeley.edu/~yang/courses/ce248/CE248_LN_Floor_vibrations.pdf

	Mapping of course objectives with Programme Outcomes: (1/2/3 indicates strength of correlation) 3- strong,2-Medium, 1-Weak													
~	Programme Outcomes (POs)													
Cos	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01 PS02													
CO1	3	2	-	-	-	2	2	-	-	-	-	-	-	2
CO2	3	2	-	2	-	2	2	-	-	-	-	-	-	2
CO3	3	2	-	2	-	2	2	-	-	-	-	-	-	2
CO4	3	2	-	-	-	2	2	-	-	-	-	-	-	2
CO5	3	3 2 2 2 2												

ASEISMIC ANALYSIS AND DESIGN OF STRUCTURES

COURSE OBJECTIVES

- To understand the concepts of engineering seismology
- To analyze building for earthquake forces and introduce design concepts •
- To explain the design guidelines for earthquake resistant masonry and earthen buildings •
- To analyze rigid frames and shear wall for earthquake loading •
- To gain knowledge on vibration control techniques •

UNIT I EARTHQUAKE GROUND MOTION

Engineering Seismology - Elastic rebound theory - Plate tectonic theory - Seismic waves - earthquake size measurement of earthquakes - Strong ground motions - Tsunami - Seismic zoning map of India Information on some disastrous earthquakes.

UNIT II EARTHOUAKE ANALYSIS AND DESIGN CONCEPTS

Response spectra - Introduction to methods of seismic analysis - Equivalent static analysis IS 1893 provisions -Response spectrum method - Time history method - Push over analysis - Mathematical modeling of multi-storey RC Building; Design methodology - Architectural consideration - geotechnical consideration - structural design consideration - Capacity design - Techniques of aseismic design.

UNIT III EARTHQUAKE DESIGN OF MASONRY BUILDINGS

Guidelines for earthquake resistant earthen buildings and masonry buildings - Design considerations.

UNIT IV EARTHQUAKE DESIGN OF RC STRUCTURES

Earthquake resistant design of RCC. Buildings - Material properties - Lateral load analysis - Design and detailing - Rigid frames; Shear wall - Coupled shear wall.

UNIT V SPECIAL TOPICS

Liquefaction, vibration control - Tuned mass dampers - Principles and application, Basic concept of seismic base Isolation - Various systems- Case studies

COURSE OUTCOMES

At the end of this course, the students will be able to

- describe ground motion and its relationship to seismic design of structures. •
- calculate earthquake induced lateral force on the structure. •
- include earthquake resistant features in masonry buildings. •
- apply the basic principles of conceptual design for earthquake resistant RC buildings and carry out the • detailed design of earthquake resistant RC buildings.
- adopt vibration control methods for buildings located in earthquake zone. •

TOTAL :75 PERIODS

15

15

15

15

- 1. Chopra A K, "Dynamics of Structures Theory and Applications to Earthquake Engineering", Prentice-Hall of India Pvt. Ltd., New Delhi, 2007.
- 2. Pankaj Agarwal and Manish Shrikhande, "Earthquake Resistant Design of Structures, Prentice", Hall ofIndia Pvt. Ltd., New Delhi, 2006.
- 3. Taranath B S, "Wind and Earthquake Resistant Buildings Structural Analysis & Design", Marcell Decker, NewYork, 2005.
- 4. Chen WF & Scawthorn, "Earthquake Engineering Hand book", CRC Press, 2003.
- 5. S.K.Duggal, "Earthquake Resistant Design of Structures", Oxford University Press, 2007

CODE BOOKS

- IS:13920-1993 Ductile detailing of reinforced concrete structures subjected to seismic forces Code of Practice.
- IS:1893 (Part I) 2002 Indian Standard Criteria for Earthquake Design of Structures General Provisions and Buildings.
- 3. IS:4326 1993 Earthquake Resistant Design and Construction of Buildings Code of Practice.
- 4. IS:13827-1993 Improving Earthquake Resistance of Earthen Buildings Guidelines.
- 5. IS:13828 1993 Improving Earthquake Resistance of Low Strength Masonry Buildings -- Guidelines.

WEB LINKS

- 1. http://www.tylin.com/en/services/seismic_analysis_retrofit_and_design
- 2. http://www.trb.org/Main/Blurbs/160387.aspx
- 3. http://www.sciencedirect.com/science/article/pii/S0886779801000517

	Mapping of course objectives with Programme Outcomes: (1/2/3 indicates strength of correlation) 3- strong,2-Medium, 1-Weak													
G	Programme Outcomes (POs)													
Cos	PO1	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01 PS02												
CO1	3	2	-	-	-	-	2	-	-	-	-	2	2	-
CO2	3	2	-	-	-	-	2	-	-	-	-	2	2	-
CO3	3	2	-	-	-	-	2	-	-	-	-	2	2	-
CO4	3	2	-	-	-	-	2	-	-	-	-	2	2	-
CO5	3	3 2 2 - 2 2 2 -												

DESIGN OF PRE-STRESSED CONCRETE STRUCTURES

COURSE OBJECTIVES

- To analyze various systems of prestressing using basic principles.
- To design flexural members for shear, bond and torsion and end blocks.
- To analyze and design continuous beams using the concept of linear transformation and cable profile.
- To design the tension and compression members and evaluate their application in design of pipes, water tanks, piles and flag mast.
- To analyze and design composite section and prestressed concrete bridges.

UNIT I PRINCIPLES AND BEHAVIOUR OF PRESTRESSING

Principles of Prestressing - Types and systems of prestressing, need for high strength materials; Analysis methods, losses, deflection (short-long term), camber, cable layouts.

UNIT II DESIGN OF FLEXURAL MEMBERS

Behaviour of flexural members - Determination of ultimate flexural strength - Codal provisions; Design of flexural members; Design for shear - bond and torsion; Design of end blocks.

UNIT III DESIGN OF CONTINUOUS BEAMS

Analysis and design of continuous beams - Methods of achieving continuity - Concept of linear transformations, concordant cable profile and gap cables

UNIT IV DESIGN OF TENSION AND COMPRESSIONMEMBERS

Design of tension members - Application in the design of prestressed pipes and prestressed concrete cylindrical water tanks; Design of compression members with and without flexure - application in the design of piles, flag masts and similar structures.

UNIT V DESIGN OF PRESTRESSED CONCRETE BRIDGES

Composite Beams - Analysis and design - Composite sections - Ultimate strength - Application in prestressed concrete bridges; Design of pre- tensioned and post tensioned girder bridges - Partial prestressing - advantages and applications.

TOTAL : 75 PERIODS

COURSE OUTCOMES

At the end of this course, the students will be able to

- explain the principle, types and systems of prestressing and analyze the deflections.
- determine the flexural strength and design the flexural members, end blocks.
- analyze the statically indeterminate structures and design the continuous beam.
- design the tension and compression members and apply it for design of piles.
- analyze the stress, deflections, flexural and shear strength and apply it for the design of bridges.

15

15

15

15

- 1. Krishna Raju, "Prestressed Concrete", Tata McGraw Hill Publishing Co, 2007.
- 2. Sinha.N.C.and.Roy.S.K, "Fundamentals of Prestressed Concrete", S.Chand and Co., 2011.
- 3. Lin.T.Y., "Design of Prestressed Concrete Structures", John Wiley and Sons Inc, 1981.
- 4. Evans, R.H. and Bennett, E.W., "Prestressed Concrete", Champman and Hall, London, 1998.
- 5. Rajagopalan.N, "Prestressed Concrete", Narosa Publications, New Delhi, 2008.

CODE BOOKS

- 1. IS456 2000 IS Code of Practice for Plain and Reinforced Concrete.
- 2. IS1343 1980 IS Code of Practice for Prestressed Concrete.
- 3. IS1678-1998-Specification for Prestressed Concrete Pole for verhead Power Traction and Telecommunication lines.
- 4. IRC:6-2010 Standard Specifications and Code of Practice for Road Bridges, Section II Loads and Stresses (Fifth Revision).
- IRC:18-2000 Design Criteria for Prestressed Concrete Road Bridges(Post-Tensioned Concrete) (3rd Revision).
- 6. IRS Indian Railway Standard Specifications.
- 7. BS8110 1985 Code of Practice for Design and Construction.
- 8. IS784 2001 IS Specification for Prestressed Concrete Pipes.
- 9. IS3370 1999 Part III IS Code of Practice for Concrete Structures for the storage of liquids.
- 10. IS875 1987 Part I IV IS Code of Practice for Design loads.

WEB LINKS

- 1. http://www.assakkaf.com/ence_454_lecture_notes.htm
- 2. http://faculty.delhi.edu/hultendc/AECT480-Lecture%2024.pdf
- 3. http://www.colincaprani.com/structural-engineering/courses/lecture-notes/

		(M 1/2/3 ir	apping ndicates	of Cou s streng	rse Ob gth of co	jectives orrelati	s with F ion) 3–9	Progran Strong,	nme Out 2–Medi	comes: um, 1–V	Veak			
Cos		Programme Outcomes (POs) PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01 PS02													
0.03	PO1	D1PO2PO3PO4PO5PO6PO7PO8PO9PO10PO11PO12PS01PS02													
CO1	3	OI PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01 PS02 3 2 2 - 2 - 1 - - - 2 - 2													
CO2	3	2	2	-	-	-	1	-	-	-	-	2	-	2	
CO3	3	2	2	-	-	-	1	-	-	-	-	2	-	2	
CO4	2	2	2	-	-	-	1	-	-	-	-	2	-	2	
CO5	2	2	2	-	-	-	1	-	-	-	-	2	-	2	

FINITE ELEMENT METHOD

COURSE OBJECTIVES

- To equip with the finite element analysis fundamentals.
- To formulate the design problems into FEA.
- To perform engineering simulations using finite element analysis software (ANSYS).
- To understand the ethical issues related to the utilization of FEA in the industry.
- To execute the CAD interfaces, joints and connections, non-linear behavior, optimization and analysis to code.

UNIT I FORMULATION OF BOUNDARY VALUES

Basic steps in finite element anlaysis - Boundary value problems – Approximate solutions – Variational and weighed residual methods – Ritz and Galerkin formulations – Concept of piecewise approximation and finite element – Displacement and shape functions – Weak formulation – Minimum potential energy – Generation of stiffness matrix and load vector.

UNIT II STRESS ANALYSIS

Two dimensional problems – Plane stress, plane strain and axisymmetric problems – Triangular and rectangular elements – Natural coordinates – Computation of stiffness matrix for isoparametric elements - Numerical integration (Gauss quadrature) - Brick elements - Elements for fracture analysis; Introduction to plate bending and shell elements

UNIT III MESHING AND SOLUTION

Higher order elements – P and H methods of mesh refinement – Ill conditioned elements – Discretisation errors; Auto and adaptive mesh generation techniques - Error evaluation

UNIT IV DYNAMIC ANALYSIS

Introduction – Vibrational problems – Equations of motion based on weak form – Longitudinal vibration of bars – Transverse vibration of beams – Consistent mass matrices – Element equations – Solution of eigenvalue problems – Vector iteration methods – Normal modes – Transient vibrations – Modeling of damping – Direct integration methods

UNIT V PLATE AND SHELL ELEMENTS

Formation of stiffness matrix for plate bending elements of triangular and quadrilateral elements; Concept of four node and eight node isoparametric elements; Cylindrical thin shell elements.

TOTAL : 75 PERIODS

15

15

15

15

COURSE OUTCOMES

At the end of this course, the students will be able to

- develop finite element formulations of single degree of freedom problems and solve them
- use finite element analysis programs based upon either "p-method" or "h-method" finite element mathematical formulations
- use ansys software to perform stress, thermal and modal analysis
- compute the stiffness values of noded elements
- determine its natural frequencies, and analyze harmonically-forced vibrations

REFERENCES

- 1. S. S. Bhavikatti, "Finite Element Analysis", New Age Publishers, 2007.
- 2. C. S. Krishnamoorthy, "Finite Element Analysis: Theory and Programming", Tata McGraw-Hill, 2008.
- 3. Zienkiewicz, O.C. and Taylor, R.L., "The Finite Element Method", McGraw Hill, 2005.
- 4. Chandrupatla, R.T. and Belegundu, A.D., "Introduction to Finite Elements in Engineering", Prentice Hall of India, 2011.
- 5. Moaveni, S., "Finite Element Analysis Theory and Application with ANSYS", Prentice Hall Inc., 2003.

WEB LINKS

- 1. http://www.colorado.edu/engineering/CAS/courses.d/IFEM.d/Home.html
- 2. http://nptel.ac.in/courses/112104115/
- 3. http://freevideolectures.com/Course/2357/Finite-Element-Method

			M (1/2/3 in	apping	of cou s streng	rse obj gth of c	ectives orrelati	with Pi ion) 3-	rogram strong,	me Out 2-Mediu	comes: 1m, 1-W	eak			
~					Progra	mme O	outcom	es (POs	5)						
Cos	PO1	PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01 PS02													
CO1	3	O1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01 PS02 3 2 - - 2 2 - - - 2 2													
CO2	3	2	-	2	-	2	2	-	-	-	-	-	-	2	
CO3	3	2	-	-	-	2	2	-	-	-	-	-	-	2	
CO4	3	2	-	2	-	2	2	-	-	-	-	-	-	2	
CO5	3	2	-	-	-	2	2	-	-	-	-	-	-	2	

PSE16205 ADVANCED STRUCTURAL ENGINEERING LABORATORY

COURSE OBJECTIVE

- To design concrete mixes and study strength properties of concrete.
- To perform advanced laboratory experiments that emphasize the structure-property relationship, statistical analysis, technical manuscript preparation.
- To get a practical knowledge about the Non destructive tests.
- To know about measuring devices and their field applications.

LIST OF EXPERIMENTS

- 1. Concrete mix design and study of mechanical properties of concrete
- 2. Fresh properties of Self Compacting Concrete using slump flow, L Box and V Funnel Tests
- 3. Fabrication, casting and testing of simply supported reinforced concrete beam for strength and deflection behaviour.
- 4. Testing of simply supported steel beam for strength and deflection behaviour.
- 5. Fabrication, casting and testing of reinforced concrete column subjected to concentric and eccentric loading.
- 6. Dynamic testing of cantilever steel beam
 - a. To determine the damping coefficients from free vibrations.
 - b. To evaluate the mode shapes.
- 7. Static cyclic testing of single bay two storied steel frames and evaluate
 - a. Drift of the frame.
 - b. Stiffness of the frame.
 - c. Energy dissipation capacity of the frame.
- 8. Determination of in-situ strength and quality of concrete using
 - a. Rebound hammer.
 - b. Ultrasonic Pulse Velocity Tester.
- 9. Study of Measuring devices such as
 - a. Beggs Deformeter
 - b. Mechanical Strain Gauge
 - c. Optical strain gauge
 - d. Electrical Strain Gauges

TOTAL :60 PERIODS

COURSE OUTCOME

At the end of this course, the students will be able to

- describe the strength properties of concrete and design the concrete mixes.
- perform advanced laboratory experiments.
- know about various Non-destructive testing methods.
- explain about measuring devices and their field applications.

REFERENCES

- 1. Dally J W, and Riley W F, "Experimental Stress Analysis", McGraw-Hill Inc. New York, 1991.
- 2. L.S Srinath, Experimental Stress Analysis", Tata McGraw-Hill Publishing Company Limited, New Delhi, 1992.

		(M 1/2/3 ir	apping ndicates	of cours streng	rse objo gth of co	ectives orrelati	with Pi ion) 3-	rogram strong,	me Out ,2-Mediu	comes: 1m, 1-W	'eak				
	Programme Outcomes (POs)															
Cos	PO1	PO2PO3PO4PO5PO6PO7PO8PO9PO10PO11PO12PS01PS02														
CO1	3	-	-	-	-	1	2	-	3	-	-	2	-	2		
CO2	3	-	-	-	ŀ	1	2	-	3	-	I	2	-	2		
CO3	3	-	-	-	I	1	2	-	3	-	I	2	I	2		
CO4	3	-	-	-	-	1	2	-	3	-	-	2	-	2		

ELECTIVE I

PSE16151 MATRIX METHODS OF STRUCTURAL ANALYSIS

COURSE OBJECTIVES

- To develop flexibility and stiffness matrices for the single and two coordinate system.
- To transform stiffness and flexibility matrices from system coordinate to element coordinate
- To expose flexibility method and its application to pin jointed plane truss, continuous beams, frames and grids.
- To develop stiffness matrix and their application to two and three dimensional pin-jointed trusses.
- To analyse substructures by iteration methods.

UNIT I FUNDAMENTAL CONCEPTS- STIFFNESS AND FLEXIBILITY

Introduction-Force and displacement measurement - Generalized or Independent measurement - Constrained or Dependent measurements- Behaviour of structures; Principle of superposition - Methods of Structural analysis - Introduction structure with single coordinate - Two coordinates - Flexibility and stiffness matrices in N coordinates- Examples, symmetric nature of matrices - Stiffness and flexibility matrices in constrained measurements - Stiffness and flexibility of systems and elements - Computing displacements and forces from virtual work- Computing stiffness and flexibility coefficients.

UNIT II ENERGY CONCEPTS & TRANSFORMATION IN STRUCTURES

Strain energy in terms of stiffness & flexibility matrices - Properties of stiffness and flexibility matrices - Interpretation of coefficients – Betti's law (forces not at the coordinates) - Other energy theorems - Using matrix notations - Determinate, indeterminate structures - Transformation of system forces to element forces - Element flexibility to system flexibility -System displacement to element displacement - Element stiffness to system stiffness - Transformation of forces and displacements in general - Stiffness and flexibility in general - Normal coordinates and orthogonal transformation - Principle of contragradience.

UNIT III FLEXIBILITY METHOD

Statically determinate structures - Indeterminate structures - Choice of redundant leading to ill and wellconditioned matrices - Automatic choice of redundant- Rank technique - Transformation to one set of redundant to another - Internal forces due to thermal expansion and lack of fit - Reducing the size of flexibility matrix -Application to pin jointed plane truss - continuous beams - Frames -Grids.

UNIT IV STIFFNESS METHOD

Introduction - Development of the stiffness method - Stiffness matrix for structures with zero force at some coordinates- Analogy between flexibility and stiffness - lack of fit - Stiffness matrix with rigid motions - Application of stiffness approach to pin jointed plane & space trusses - Continuous beams - Frames - Grids - Space frames introduction only - Static condensation technique- Choice of method; Stiffness or flexibility - Direct stiffness approach - Application to two & three dimensional pin- Jointed trusses.

9

9

9

UNIT V ANALYSIS BY SUBSTRUCTURES & ITERATION

Analysis by substructures using the stiffness & the flexibility method with tridiagonalisation - Iteration method for frames with non-prismatic members - Iteration method applied to rigidly connected members; Computer program for the analysis of rigidly connected beams - Efficiency of the iteration method.

TOTAL :45 PERIODS

COURSE OUTCOMES

At the end of this course, the students will be able to

- understand the basic concept of flexibility and stiffness, principle of superposition and methods of structural analysis.
- transform the flexibility and stiffness matrices from system coordinates to element coordinates. •
- identify the degree of freedom and ability to formulate flexibility matrix of components of structure.
- formulate the stiffness matrix and apply to 2D and 3D structure. •
- analyze the frame through the iteration methods. •

REFERENCES

- 1. Rubinstein F.M., "Matrix Computer methods of Structural Analysis", Prentice Hall, 1966.
- 2. William Weaver JR. and James M. Gere, "Matrix Analysis of framed Structures", CBS Publishers and Distributers, 1990.
- 3. Manicka Selvam V.K, "Elements of Matrix Stability Analysis of Structures", Khanna Publishers, 2006.
- 4. Pandit G.S, Gupta S.P, "Structural Analysis-A matrix Approch", Tata McGraw Hill Publishing Company Ltd, 2008.
- 5. C. Natarajan and P.Revathy, "Matrix methods of structural analysis, (Theory and Practice)", PHI Publications, 2011

WEB LINKS

- 1. https://www.youtube.com/watch?v=O1LwyvdZdCc
- 2. https://en.wikipedia.org/wiki/Direct stiffness method
- 3. http://www.pucmmsti.edu.do/websise/estudiante/materias/201220131/ST-IC%20-424-T-01/Analisis%20Matricial,%201de%203.pdf

		(M: 1/2/3 in	apping dicates	of cours streng	rse objo th of co	ectives orrelati	with Pi ion) 3-	rogran strong	ıme Out ,2-Medi	comes: um, 1-W	/eak			
Car					P	rogran	nme O	utcome	es (POs)					
Cos	PO1	01 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01 PS02													
CO1	3	3 2 2 2 2													
CO2	3	2	-	-	-	2	2	-	-	-	-	-	-	2	
CO3	3	2	-	-	-	2	2	-	-	-	-	-	-	2	
CO4	3	2	-	-	-	2	2	-	-	-	-	-	-	2	
CO5	3	2	-	-	-	2	2	-	-	-	-	-	-	2	

MEERING COLLE BOARD OF STUDIES Civil Engineering A mage 16 AUTONOMOUS

COURSE OBJECTIVES

- To summarize the properties of concrete making materials such as cement, aggregates and admixtures.
- To categorize the properties and tests on fresh and hardened concrete.
- To acquire the practical knowledge on mix design principles, concepts and methods.
- To acquire knowledge in the special concretes and their applications in the diverse construction field.
- To study the concrete manufacturing processes, concreting methods and different special formworks.

UNIT I MATERIALS FOR CONCRETE

Cement - Manufacturing - Types and grades of cement - Chemical composition - Hydration of cement - micro structure of hydrated cement - Testing of cement - Special cements; Aggregates - classifications - IS specifications - Properties - Grading and specified grading - Methods of combining aggregates - Testing of aggregates; Water - Physical and chemical properties; Admixtures - chemical & mineral admixtures - Mineral additives.

UNIT II PROPERTIES OF CONCRETE

Properties of fresh concrete - Workability - Segregation – Bleeding - Laitance - Tests on fresh concrete - Properties & tests on hardened concrete - Structural properties - Strength, factors affecting the strength of concrete - Maturity of concrete, modulus of elasticity, creep-shrinkage, factors affecting creep and shrinkage of concrete - Microstructure of concrete - Micro cracking; Testing of existing and aged structures using NDT - Variability of strength in concrete; Durability of concrete - Chemical attack on concrete.

UNIT III CONCRETE MIX DESIGNS

Principles of mix design - Methods of concrete mix design - Factors influencing mix proportions - IS, ACI and British methods of mix design; Statistical quality control - Sampling and acceptance criteria.

UNIT IV SPECIAL CONCRETES

Light weight concrete and types - Fly ash concrete - Fibre reinforced concrete types & applications - Sulphur concrete - Sulphur impregnated concrete - Polymer concrete & its types - Super plasticized and hyper plasticized concretes - Epoxy resins and screeds, properties - Their applications in rehabilitation works - High performance concrete, high performance fibre reinforced concrete - Roller compacted concrete - Self-compacting concrete and its applications - Bacterial concrete - Recycled aggregate concrete - Smart concrete - Ferro cement and its applications.

UNIT V CONCRETING METHODS

Concrete manufacturing process - Stages of manufacturing - Transportation, placing and curing methods -Extreme weather concreting - Special concreting methods - Vacuum dewatering - Underwater concreting; Special form work types. TOTAL:45 PERIODS

3003

9

9

9

9

COURSE OUTCOMES

At the end of this course, the students will be able to

- execute and test the concrete made with cement, aggregates and admixtures.
- describe the properties and durability of fresh and hardened concrete.
- execute mix proportioning of concrete and describe how the strength of concrete can be modified by changing the proportions.
- select suitable concrete for different structures considering the prevailing weathering conditions.
- decide the correct concreting methods in the field depending upon the requirement and site conditions

REFERENCES

- 1. Santhakumar A.R., "Concrete Technology", Oxford University Press India, 2006.
- 2. Neville A.M., "Properties of Concrete", Prentice Hall,5th Edition 2012.
- 3. Shetty, M.S., "Concrete Technology: Theory and Practice', S.Chand and Co. Pvt. Ltd., Delhi, 2005.
- 4. Pierre-Claude Aitcin, "High Performance Concrete", Taylor & Francis, 2011.
- 5. Mary KrumboltzHurd, "Formwork for Concrete", American Concrete Institute, 2005.

CODE BOOKS

- 1. IS:10262-2009, Indian Standard "Concrete Mix Proportioning Guide Lines" (First Revision).
- 2. IS:456-2000, Plain and Reinforced Concrete code of practice (4thEdition).
- 3. Charts from ACI 211.1-91 1991 American Standard Practice for selecting proportions for normal, heavy weight and mass concrete, ACI Committee 211.
- 4. Charts from DOE 1988 Teychenne, D C, Franklin, R E and Erntroy, H C. British Code of Practice for Design of normal concrete mixes, Department of the Environment (DOE), UK, HMSO, 1975 (1988).

WEB LINKS

- 1. https://en.wikipedia.org/wiki/Advance_Concrete
- 2. http://www.concretematerialscompany.com/concrete/
- 3. http://www.engineeringcivil.com/concrete-mix-design-calculations.html

		(1	Ma 1/2/3 in	apping dicates	of cour streng	rse obje th of co	ectives orrelati	with Pi on) 3-	rogram strong	ime Out ,2-Mediu	comes: um, 1-W	/eak			
~	Programme Outcomes (POs) s														
Cos	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01 PS02														
C01	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01 PS02 3 - - - 2 2 - - 2 2 2 - 2 2 2 - 2														
CO2	3	-	-	-	-	2	2	-	-	-	-	2	-	2	
CO3	3	-	-	-	-	2	2	-	-	-	-	2	-	2	
CO4	3	-	-	-	-	2	2	-	-	-	-	2	-	2	
CO5	3	-	-	-	-	2	2	-	-	-	-	2	-	2	

DESIGN OF TALL BUILDINGS

COURSE OBJECTIVES

- To paraphrase various aspects of planning of tall buildings and know about different types of loads
- To establish various structural systems for high rise buildings with their behaviour and analysis.
- To illustrate knowledge about analysis involved in tall structures.
- To formulate about sectional shapes and design for differential movement, creep and shrinkage effects.
- To gain knowledge on stability analysis of various systems and to know about advanced topics.

UNIT I DESIGN PRINCIPLES AND LOADING

General - Factors affecting growth, height and structural form - Design philosophy - Loading - Gravity loading - Wind loading - Earthquake loading - Combinations of loading; Strength and Stability - Stiffness and drift limitations - Human comfort criteria- Creep effects - Shrinkage effects - Temperature effects - Fire - Foundation settlement - Soil- structure interaction, Material.

UNIT II BEHAVIOUR OF VARIOUS STRUCTURAL SYSTEMS

High rise behaviour - Rigid frames, braced frames, Infilled frames, shear walls, coupled shear walls, wall-frames, tubulars, cores, futrigger; Braced and hybrid mega systems.

UNIT III ANALYSIS OF TALL BUILDINGS

Modeling for analysis - Assumptions - Modeling for approximate analyses - Modeling for accurate analysis - Reduction techniques; Dynamic analysis - Response to wind loading - Along-wind response - Across-wind response - Estimation of natural frequencies & damping - Types of excitation - Design to minimise dynamic response - Response to earthquake motions - Response to ground accelerations - Response spectrum analysis - Estimation of natural frequencies and damping - Human response to building motions.

UNIT IV STRUCTURAL ELEMENTS

Sectional shapes, properties and resisting capacity, design, deflection, cracking, prestressing, shear flow; Design for differential movement; Creep and shrinkage effects - temperature effects and fire resistance.

UNIT V STABILITY

Overall buckling analysis of frames - wall-frames - Approximate methods second order effects of gravity of loading; P-Delta analysis - simultaneous first-order and P Delta analysis - Translational - Torsional instability - out of plumb effects - stiffness of member in stability - effect of foundation rotation.

TOTAL :45 PERIODS

COURSE OUTCOMES

At the end of this course, the students will be able to

- know design principles and different types of loading
- describe the various structural systems used in the construction of tall structures.

9

9

9

9

- capable of analysing the tall structures
- design of structural elements for secondary effects
- execute stability analysis, overall buckling analysis of frames, analysis for various secondary effects such as creep, shrinkage and temperature.

- 1. Bryan Stafford Smith and Alexcoull, "Tall Building Structures -
- 2. Analysis and Design", John Wiley and Sons, Inc., 1991.
- 3. Taranath B.S., "Structural Analysis and Design of Tall Buildings", McGrawHill, 2011."
- 4. Gupta.Y.P.,(Editor), Proceedings of National Seminar on High Rise Structures- Design and Construction Practices for Middle Level Cities, New Age International Limited, New Delhi,1995.
- 5. Lin T.Y and Stotes Burry D, "Structural Concepts and systems for Architects and Engineers", John Wiley, 1988.

WEB LINKS

- 1. http://www.sciencedirect.com/science/article/pii/S0307904X09003813
- 2. http://www.sciencedirect.com/science/article/pii/S016761050700089X
- 3. http://www.crcnetbase.com/isbn/9781439850893

		(1	Ma 1/2/3 in	apping dicates	of cou streng	rse objo th of co	ectives orrelati	with Pi on) 3-	rogram strong,	me Out ,2-Medi	comes: um, 1-W	/eak			
~	Programme Outcomes (POs)														
Cos	PO1	O1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01 PS02													
CO1	3	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01 PS02 3 2 - - 2 2 - - 2 2 2 - 2 2 2 - 2													
CO2	3	2	-	-	-	2	2	-	-	-	-	2	-	2	
CO3	3	2	-	-	-	2	2	-	-	-	-	2	-	2	
CO4	3	2	-	-	-	2	2	-	-	-	-	2	-	2	
CO5	3	2	-	-	-	2	2	-	-	-	-	2	-	2	

COURSE OBJECTIVES

- To describe the fundamentals of optimization concepts and their applications in the structural engineering field.
- To categorize the linear programming methods of the optimization.
- To discriminate the constrained and unconstrained variables of the various structural engineering problems.
- To prepare the various methods of optimality involving geometric and dynamic programming.
- To summarize on the various advanced techniques in the structural optimization.

UNIT I OPTIMIZATION FUNDAMENTALS

Optimization methods - Introduction, Problem formulation, Introduction to mathematical principles in optimization - Mathematical models - Activity - Design methodology- Civil engineering case study-Unconstrained functions - single variable- several variable- equality constraints - inequality constraintsoptimization- design space- Feasible and Infeasible- Convex and concave - Active constraints- Local and Global optima - differential Calculus- Optimality criteria- Lagrange multiplier method- Kuhn- tucker Criteria.

UNIT II LINEAR PROGRAMMING

Formulation of problems - Graphical solution -Analytical methods - Standard form - Slack, surplus and artificial variables - Canonical form - Basic feasible solution - Simplex method - Two phase method - Penalty method - Duality theory - Primal - Dual algorithm.

UNIT III NON-LINEAR PROGRAMMING

Introduction to non-linear problems - One dimensional minimization methods - unimodal function - Exhaustive and unrestricted search - Dichotomous search - Fibonacci method- Golden section method - Interpolation methods; Unconstrained multivariable function - Univariate method- Cauchy's steepest descent method-conjugate gradient method (Fletcher Reeves) - Variable metric methods (Davison-Fletcher-Powell) - Direct and indirect methods - Interior Penality function - External Penalty function method.

UNIT IV GEOMETRIC PROGRAMMING AND DYNAMIC PROGRAMMING

Geometric Programming- Polynomial - Degree of difficulty- Reducing G.P.P. to a set of simultaneous equations -Concepts of solving problems with zero difficulty and one degree of difficulty; Dynamic Programming – Bellman's principle of optimality - Representation of a multi stage decision problem - Concept of sub optimisation problems - Truss optimization.

UNIT V NON-TRADITIONAL METHODS

Genetic Algorithm - Terminology - Natural Law of Evolutions - Genetic operators - steps for solution of problems - Simulated Annealing - Algorithm – Boltzman's equation - ANT Colony optimization – Algorithm Pheromone trail - Travelling salesman problem- Introduction to TABU search - sample problem; Artificial Neural Network -Application characteristics. TOTAL :45 PERIODS

9

9

9

9

COURSE OUTCOMES

At the end of this course, the students will be able to

- apply the basic ideas in optimization to make the structures as lightly as possible.
- classify the linear programming techniques in engineering optimization.
- formulate the unconstrained and constrained optimization problems in structural design.
- identify the methods in solving the problems related to geometric and dynamic programming.
- standardize in advanced techniques of optimization such as genetic algorithm and artificial neural networks.

REFERENCES

- 1. Rao. S.S., "Optimisation Theory and Applications", New Age International Private Limited Publisher, New Delhi, 2002.
- 2. Belegundu, A.D.and Chandrapatla, T.R., "Optimisation Concepts and Applications in Engineering", Pearson Education, 2011.
- 3. Deb K., "Optimisation for Engineering Design", Algorithms and examples, Prentice Hall, New Delhi, 2012.
- 4. Arora J.S., "Introduction to Optimum Design", McGraw -Hill Book Company, 2011.
- 5. Taha, H.A., "Operations Research An Introduction", Prentice Hall of India, 2004.

WEB LINKS

- 1. http://www.structures.ethz.ch/education/master/optimization
- 2. http://web.mit.edu/16.810/www/16.810_L8_Optimization
- 3. http://nptel.ac.in/courses/105108127

		(M 1/2/3 in	apping dicates	of cou s streng	rse obj gth of c	ectives orrelat	with P tion) 3-	rogran - strong	nme Ou g,2-Med	tcomes: ium, 1-V	Weak				
G	Programme Outcomes (POs)															
Cos	PO1	01 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO1 PSO2														
CO1	2	2 3 1 2 1 - - - 1 2 2														
CO2	2	3	2	2	1	-	-	-	-	-	-	1	2	2		
CO3	2	3	2	2	1	-	-	-	-	-	-	1	2	2		
CO4	2	3	2	2	1	-	-	-	-	-	-	1	2	2		
CO5	2	2	2	2	1	-	-	-	-	-	-	1	2	2		

ELECTIVE II

PSE16251 MAINTENANCE AND REHABILITATION OF STRUCTURES

COURSE OBJECTIVES

- To expertise the students to procure the accurate idea about the maintenance of repair strategies of building.
- To identify and apply appropriate structural and construction technologies to rectify maintenance problems.
- To formulate the students comprehend the basic concepts related to materials available for repair.
- To articulate the students to deal in practice with the recent repair and demolition.
- To create an ability to prepare repair and rehabilitation method for various deteriorated structure.

UNIT I MAINTENANCE AND REPAIR STRATEGIES

Maintenance - Repair and Rehabilitation - facets of maintenance, importance of maintenance - various aspects of inspection; Assessment procedure for evaluating a damaged structure - causes of deterioration

UNIT II SERVICEABILITY AND DURABILITY OF CONCRETE

Quality assurance for concrete - concrete properties- strength - permeability - thermal properties and cracking - Effects due to climate - temperature - chemicals – corrosion; Design and construction errors - Effects of cover thickness and cracking

UNIT III MATERIALS FOR REPAIR

Special concretes and mortar - concrete chemicals - special elements for accelerated strength gain - Expansive cement - Polymer concrete - Sulphur infiltrated concrete - Ferro cement - Fibre reinforced concrete.

UNIT IV TECHNIQUES FOR REPAIR AND DEMOLITION

Rust eliminators and polymers coating for rebars during repair - foamed concrete, mortar and dry pack - vacuum concrete - Gunite and Shotcrete - Epoxy injection - Mortar repair for cracks - shoring and underpinning. Methods of corrosion protection - corrosion inhibitors - corrosion resistant steels - coatings and cathodic protection; Engineered demolition techniques for dilapidated structures - Case studies.

UNIT V REPAIRS, REHABILITATION AND RETROFITTING OF STRUCTURES

Repairs to overcome low member strength - Deflection, cracking, chemical disruption; Weathering corrosion, wear, fire, leakage and marine exposure.

TOTAL :45 PERIODS

COURSE OUTCOMES

At the end of this course, the students will be able to

- execute and test the concrete made with cement, aggregates and admixtures.
- describe the properties and durability of fresh and hardened concrete.

9

9

9

9

- execute mix proportioning of concrete and describe how the strength of concrete can be modified by changing the proportions.
- select suitable concrete for different structures considering the prevailing weathering conditions.
- decide the correct concreting methods in the field depending upon the requirement and site conditions

- 1. Shetty M.S., Concrete Technology Theory and Practice, S.Chand and Company, New Delhi, 2005.
- 2. Santhakumar, A.R., Training Course notes on Damage Assessment and repair in Low Cost Housing, "RHDC-NBO" Anna University, July 1992.
- 3. Raikar, R.N., Learning from failures Deficiencies in Design, Construction and Service R&D Centre (SDCPL), RaikarBhavan, Bombay, 1987.
- 4. Dension Campbell, Allen and Harold Roper, "Concrete Structures, materials, maintenance and repair", Longman Scientific and Technical, UK, 1991.
- 5. Dr. B. Vidivelli, "Rehabilitation Of Concrete Structures", Standard Publishers Distributors, 2007.

WEB LINKS

- 1. http://theconstructor.org/concrete/design-of-concrete-structures-for-durability/7268/
- 2. http://www.sustainableconcrete.org/?q=node/171
- 3. http://www.concreteconstruction.net/repair/demolition-the-easy-way.aspx

			N (1/2/3	Mapping indicate	g of cou es stren	ırse obj gth of c	ectives orrelati	with Pr ion) 3-	ogramr strong,	ne Outco 2-Mediu	omes: m, 1-We	ak			
Con	Programme Outcomes (POs)														
Cos	PO1	01 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO1 PSO2													
CO1	2	1 - 1 1 1 -													
CO2	2	-	-	-	-	-	-	-	1	-	1	1	1	-	
CO3	2	-	-	-	-	-	-	-	1	-	1	1	1	-	
CO4	2	-	-	-	-	-	-	-	1	-	1	1	1	-	
CO5	2	-	-	-	-	-	-	-	1	-	1	1	1	-	

COURSE OBJECTIVES

- To read the concept of nonlinear behaviour of beams and vibrations of beams.
- To distinguish the elastic analysis of statically determinate and indeterminate flexural members.
- To differentiate the inelastic analysis of statically determinate and indeterminate flexural members.
- To evaluate the nonlinear analysis of plates and its governing equation.
- To discuss the governing equation of circular and non-circular shells.

UNIT I NONLINEAR BENDING AND VIBRATION OF BEAMS

Introduction - Types of nonlinearities - Nonlinear governing equation for beams - Geometrically nonlinear beam problems; Vibrations of beams with various boundary conditions - Forced vibration of beams - Post buckling-cantilever column - Behaviour of beams with material nonlinearity - Nonlinear vibration and instabilities of elastically supported beams.

UNIT II ELASTIC ANALYSIS OF FLEXURAL MEMBERS

Flexural behaviour - Statically determinate and statically; Indeterminate bars - Uniform and varying thickness.

UNIT III INELASTIC ANALYSIS OF FLEXURAL MEMBERS

Inelastic analysis of uniform and variable thickness members subjected to small deformations; Inelastic analysis of flexible bars of uniform and variable stiffness; Members with and without axial restraints.

UNIT IV NONLINEAR STATIC AND DYNAMIC ANALYSIS OF PLATES

Introduction - Governing nonlinear equations for plates - Boundary conditions and methods of solutions - Large deflection analysis of rectangular and non-rectangular plates - Free and forced vibrations of rectangular and non-rectangular plates - Post buckling behaviour of plates - Effects of transverse shear deformations and material nonlinearity.Introduction - Derivations of governing equations; Circular and noncircular cylindrical shells - Shallow cylindrical shells - Forced nonlinear vibration of shells - Post buckling of shells.

UNIT V NONLINEAR ANALYSIS OF SHELLS

Introduction – Derivations of governing equations – Circular and noncircular cylindrical shells – Shallow cylindrical shells – Forced nonlinear vibration of shells – Post buckling of shells.

TOTAL :45 PERIODS

COURSE OUTCOMES

At the end of this course, the students will be able to

- describe the basic concepts of nonlinearity and its governing equation for various boundary conditions.
- categorize the elastic analysis with various boundary conditions of thin walled structural members
- compare the inelastic analysis with various boundary conditions of thin walled structural members

9

9

9

9

- justify static and dynamic analysis of plates.
- express nonlinear analysis of shells.

- 1. Reddy.J.N, "Non linear Finite Element Analysis", Oxford University Press, 2008.
- 2. Sathyamoorthy, M.,"Nonlinear Analysis of Structures", CRC Press, Boca Raton, Florida, 1997.
- 3. Fertis, D. G., "Nonlinear Mechanics", CRC Press, Boca Raton, Florida, 1998.
- 4. Majid K.I., "Non Linear Structures", Butter worth Publishers, London, 1972.
- 5. Iyengar N G R, "Elastic Stability of Structural elements", Macmillan India Ltd ,2007.

WEB LINKS

- 1. http://ocw.mit.edu/resources/res-2-002-finite-element-procedures-for-solids-and-structures-spring-2010/nonlinear
- https://www.andrew.cmu.edu/course/24-688/handouts/Week%2010%20-%20Nonlinear%20Structural%20Analysis/Lecture%20Material/Week%2010%20-%20Nonlinear%20Structural%20Analysis%20-%20Lecture%20Presentation.pdf
- 3. http://mostreal.sk/html/guide_55/g-str/gstr8.html

		(1	Ma 1/2/3 in	apping dicates	of cour streng	rse obje th of co	ectives orrelati	with Pi on) 3-	rogram strong,	me Out ,2-Mediu	comes: um, 1-W	/eak				
~					Prog	ramme	Outco	mes (P	Os)							
Cos	PO1	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01 PS02														
CO1	3	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01 PS02 3 2 - - 2 2 - - 2 2 2 - 2 2 2 - 2														
CO2	3	2	-	-	-	2	2	-	-	-	-	2	-	2		
CO3	3	2	-	-	-	2	2	-	-	-	-	2	-	2		
CO4	3	2	-	-	-	2	2	-	-	-	-	2	-	2		
CO5	3	2	-	-	-	2	2	-	-	-	-	2	-	2		

SMART STRUCTURES

COURSE OBJECTIVES

- To describe the basic principles and mechanisms of smart materials and devices.
- To demonstrate knowledge and understanding of the physical principles underlying the behavior of smartmaterials.
- To outline the basic principles and mechanisms of measuring techniques.
- To practice knowledge and understanding of the engineering principles in smart sensors, actuators and transducer technology.
- To propose improvement on the design, analysis, manufacturing and application issues involved in integrating smart materials and devices.

UNIT I PROPERTIES OF MATERIALS AND ER AND MR FLUIDS

Piezoelectric Materials and properties - Actuation of structural components - Shape Memory Alloys - Constitutive modeling of the shape memory effect, vibration control - Embedded actuators - Electro rheological and magnet orheological fluids - Mechanisms and Properties - Fiber Optics - Fibre characteristics - Fiber optic strain sensors

UNIT II VIBRATION ABSORBERS

Parallel damped vibration absorber - Gyroscopic vibration absorber - Active vibration, absorber; Applications - Vibration Characteristics of mistuned systems; Analytical approach

UNIT III MEASURING TECHNIQUES

Strain measuring techniques using electrical strain gauges - Types - Resistance - Capacitance - Inductance - Wheatstone bridges - Pressure transducers - Load cells; Temperature Compensation - Strain Rosettes.

UNIT IV CONTROL OF STRUCTURES

Control modeling of structures - Control strategies and limitations - Classification of control systems - Classical control, Modern control, Optimal control and Digital control; Active structures in practice.

UNIT V APPLICATIONS IN CIVIL ENGINEERING

Application of shape memory - Alloys in bridges - Concept of smart bridges - Application of ER fluids - Application of MR dampers in different structures - Application of MR dampers in bridges and high rise structures - Structural health monitoring; Application of optical fibres; Concept of smart concrete.

TOTAL :45 PERIODS

COURSE OUTCOMES

At the end of this course, the students will be able to

• select various smart materials and devices

9

9

9

9

- set up analytical approach on vibration absorbers
- propose various strain measurement using smart materials
- manipulate control strategies of smart structures
- apply principles of smart structures to civil engineering field

- 1. Gandhi, M.V and Thompson, B.S., "Smart Materials and Structures", Chapman and Hall, 1992.
- Yoseph Bar Cohen, "Smart Structures and Materials", The International Society for Optical Engineering, 2003.
- 3. Srinivasan, A.V., and Michael McFarland. D., "Smart Structures Analysis and Design", Cambridge University Press, 2001.
- 4. Brian Culshaw, "Smart Structures and Materials", Artech House, Boston, 1996.
- P. Gaudenzi, "Smart Structures: Physical Behavior, Mathematical Modeling and Applications", Macmillan India Ltd ,2007.

WEB LINKS

- 1. http://www.me.metu.edu.tr/courses/me493
- 2. http://nptel.ac.in/courses/112104173
- 3. http://theconstructor.org/structural-engg/smart-structures-and-materials/6/

		(M 1/2/3 in	apping Idicates	of cours streng	rse obje gth of co	ectives orrelati	with Pi ion) 3-	rogram strong,	me Out ,2-Medi	comes: um, 1-W	eak			
~					Prog	gramm	e Outco	omes (P	POs)						
Cos	PO1	Programme Outcomes (POS)D1PO2PO3PO4PO5PO6PO7PO8PO9PO10PO11PO12PS01PS02													
C01	3	-	-	-	1	2	2	-	-	-	-	2	-	2	
CO2	3	-	-	-	1	2	2	-	-	-	-	2	-	2	
CO3	3	-	-	-	1	2	2	-	-	-	-	2	-	2	
CO4	3	-	-	-	1	2	2	-	-	-	-	2	-	2	
CO5	3	-	-	-	1	2	2	-	-	-	-	2	-	2	

ELECTIVE III

PSE16351

ENERGY EFFICIENT STRUCTURES

COURSE OBJECTIVES

- To elucidate the energy audit systems in buildings.
- To create awareness of the necessity of energy needed for structures.
- To study the different climate types and their influence in building design.
- To focus on the thermal environment of structures
- To equip the knowledge of appliances and their utilisation in buildings.

UNIT I ENERGY EFFICIENT CONCEPTS

Need of energy in buildings - assessment - Energy consumption pattern of various types of buildings - Factors influencing the energy use in building - Concepts of energy efficient building.

UNIT II CLIMATE

Study of Climate types - their influence in building design - Environmental factors affecting building design; Analysis of thermal and visual environment.

UNIT III HEAT AND LIGHT

Heat gain and loss phenomenon in buildings - Thermal performance parameters - Role of building enclosures, openings and materials in thermal environment; Basic principles of light and daylight - Energy efficient light design of buildings - Daylight design of buildings.

UNIT IV APPLIANCES IN BUILDINGS

Major appliances in building and their energy consumptions - Principles of solar heating, cooling and power (PV) systems; Integration of energy efficient appliances with the buildings.

UNIT V ENERGY AUDIT

Energy survey and energy audit of buildings - Calculation of energy inputs and utilization in buildings - Energy audit reports of buildings; Concepts of Green Buildings - Energy rating of buildings.

TOTAL :45 PERIODS

COURSE OUTCOMES

At the end of this course, the students will be able to

- introduce various energy consumptions
- understand the climate and environmental factors affecting building design
- gain knowledge in design of buildings according to thermal environment
- acquire the skills in utilization of appliances and the principles behind them
- obtain the knowledge in energy audit in buildings

9

9

9

9

- 1. Chand, I. and Bhargava, P.K., "The Climatic Data Handbook", Tata McGraw Hill Publishing Company Limited, New Delhi 1999.
- 2. Threlkeld, J.L,"Thermal Environmental Engineering", Printice-Hall, Englewood Cliffs, NJ, 1998.
- Lal Jayamaha, "Energy-Efficient Building Systems: Green Strategies for Operation and Maintenance", McGraw Hill, 2007.
- Krishnan, A., Baker, N., Yannas, S. and Szokolay, S.V., "Climate Responsive Architecture A Design Hand Book for Energy Efficient Buildings", Tata McGraw Hill Publishing Company Ltd, New Delhi, 2001.
- 5. ShahinVassigh, Jason R. Chandler, "Building Systems Integration for Enhanced Environmental Performance" J. Ross Publishing, 2011.

CODE BOOK

 "Handbook on functional requirements of buildings", Parts 1-4, SP: 41 (S&T), Bureau of Indian Standards - 1995.

WEB LINKS

- 1. https://en.wikipedia.org/wiki/Green_building
- 2. https://www.wbdg.org/resources/efficientlighting.php
- 3. http://www.institutebe.com/Green-Net-Zero-Buildings/renewable-energy-advantages.aspx

			M (1/2/3 i	Iapping ndicate	g of cou s streng	rse obj gth of c	ectives orrelat	with Pı ion) 3-	ogram strong,	me Outc ,2-Mediu	omes: ım, 1-W	eak			
~	Programme Outcomes (POs)														
Cos	PO1	01 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO1 PSO2													
CO1	1	<u>1</u> <u>3</u> <u>3</u> <u>1</u> - <u>1</u> <u>2</u> <u>1</u> <u>2</u>													
CO2	1	-	-	-	1	3	3	1	-	-	1	2	1	2	
CO3	1	-	-	-	1	3	3	1	-	-	1	2	1	2	
CO4	1	-	-	-	2	3	3	1	-	-	1	2	1	2	
CO5	1	-	-	-	2	3	3	1	-	-	1	2	1	2	

STRUCTURES IN DISASTER PRONE AREAS

COURSE OBJECTIVES

- To know the various types of disaster caused by the nature and disaster prone areas in India.
- To gain knowledge in the response of the structure for various disaster.
- To obtain a brief knowledge about the planning and preparedness for a disaster.
- To know about the various modern materials and tools used in disaster reduction.
- To gain knowledge about the various organisations involved in disaster management.

UNIT I DISASTER

Introduction - Types of disasters - Disaster mitigating agencies and their organization structure at different levels; Overview of disaster situations in India; Vulnerability profile of India and vulnerability mapping including disaster prone areas, communities and places.

UNIT II RESPONSE OF THE STRUCTURE

Philosophy for design to resist Earthquake, Cyclone and flood -By-laws of urban and Semi-Urban areas-Traditional and modern structures. Response of dams, bridges, buildings - Testing and evaluation; Classification of structures from safety point of view; Methods of strengthening for different disasters - Qualification test.

UNITIII SEISMIC VULNERABILITY OF URBAN AREAS

Seismic response of R.C frames buildings with soft first storey - Preparedness and planning for an urban earthquake disaster - Tsunami and its impact - Urban settlements.

UNIT IV MODERN MATERIALS AND TECHNIQUES

Use of modern materials their impact on disaster reduction - Use of modern analysis, design and construction techniques - Optimization for performance - Damage surveys; Maintenance and modifications to improve hazard resistance - Different types of foundation and its impact on safety.

UNIT V DISASTER MANAGEMENT

Landslide hazards zonation mapping - Geo-environmental problems associates with the occurrence of landslides -Role of remote sensing, science and technology; Rehabilitation programmes - Management of Relief Camp information systems and decision making tools, voluntary agencies and community participation - various stages of disaster Management.

TOTAL :45 PERIODS

COURSE OUTCOMES

At the end of this course, the students will be able to

- know the various disasters, their characteristics, causes and impacts
- acquire knowledge in strengthening of structures by various methods which was affected by the disaster

3003

9

9

9

9

- understand the response of building with soft first storey
- use of various modern methodology and tools to reduce destructions
- gain knowledge in disaster mitigating agencies

- 1. Allen, R.T. and Edwards, S.C., "Repair of Concrete Structures", Blakie and Sons, 2005.
- Moskvin V, "Concrete and Reinforced Structures Deterioration and Protection", MirPublishers, Moscow, 1983.
- 3. Singh R.B, "Disaster Management", Rawat Publications, 2000.
- 4. Sachindra Narayan, "Anthropology of Disaster management", Gyan Publishing house, 2000.
- 5. Harsh K Gupta, "Disaster Management", Orient Blackswan Pvt. Ltd., 2003

CODE BOOKS

- 1. IS 1893 : 2002 (Part 1) Criteria for Earthquake Resistant Design of Structures General.
- 2. IS 4326 : 1993 Code of Practice for Earthquake Resistant Design and Construction of Buildings

WEB LINKS

- 1. https://en.wikipedia.org/wiki/Emergency_management
- 2. http://www.wcpt.org/disaster-management/what-is-disaster-management
- 3. http://www.slideshare.net/chaitanyakorra/disaster-resistant-architecture

			M (1/2/3 ii	lapping ndicate	g of cou s streng	rse obj gth of c	ectives orrelat	with Pi ion) 3-	rogram strong	me Out ,2-Medi	comes: um, 1-W	eak			
						Prog	gramm	e Outco	omes (P	Os)					
Cos	PO1	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01 PS02													
CO1	2	2 - - - 2 3 - 1 - 1 1 -													
CO2	2	-	-	-	-	2	3	-	1	-	-	1	1	-	
CO3	2	-	-	-	-	2	3	-	1	-	-	1	1	-	
CO4	2	-	-	-	2	2	3	-	1	-	-	1	1	-	
CO5	2	-	-	-	-	2	3	-	1	-	-	1	1	-	

CONSTRUCTION SAFETY AND MANAGEMENT

COURSE OBJECTIVES

- To gain knowledge on the cause of accident and construction industry related laws.
- To know in detail about the safety in various aspects of construction.
- To gain knowledge on the preparation of accident report by analysing the key factors.
- To gain knowledge on construction management.
- To gain knowledge on the safety implementation by case studies.

UNIT I INTRODUCTION

Importance - Causes of accident, safety measures- Environmental issues in construction- Construction industry related laws - Occupation Safety and Health Act (OSHA), National Safety Council (NSC) - British Safety Council (BSC) - Council of industrial safety (CIS) - Loss Prevention Association (India)-Construction safety; Elements of an effective safety programmes job-Site assessment

UNIT II PLANNING

Safety aspects of building and plant-layout-Introduction to treatment and disposal on Industrial wastes & effluents-Planning and safe operations- Planning and site operations; Safe systems of storing in construction materials-Excavation-Demolition work-Blasting-Timbering - Scaffolding- Hoisting apparatus and conveyors-Manual handling- Safe use of Ladder- Safety in hand tools - Safety in use of mobile cranes - Trusses, girders and beams.

UNIT III ACCIDENT CAUSATION, REPORTING AND INVESTIGATION

Accidents and Hazards control - Cost of accidents - Accident reports - Accident reporting, investigations and statistics-Identification of the key factors-Safety organization – Types - Functions-Safety committees.

UNIT IV SAFETY MANAGEMENT IN CONSTRUCTION

Safety policy-safety meeting-Planning for safety and productivity-safety management techniques-Safety sampling-Safety Audit-Job safety analysis-Incident recall techniques- Safety and Health provision in the factories act.

UNIT V CASE STUDIES

Involvement in safety - Role of Government and voluntary agencies- Safety officers; Fire hazards and preventing methods- case studies - fire accidents.

COURSE OUTCOMES

At the end of this course, the students will be able to

- understand the basic mandatory procedures to be followed in the construction industry
- know the fundamental planning and safety practices commonly implemented on construction sites

3003

9

TOTAL :45 PERIODS

9

9

9

- know the key factor for causing accidents
- understand the requirements for compliance and inspection imposed for the safety in construction site
- understand the importance of agencies involved in rescue operation by various case studies

- 1. Jimmie Hinze, "Construction safety", Prentice-Hall, 2013.
- 2. Herbert William Heinrich, "Industrial Accident Prevention", McGraw-Hill, 1959.
- 3. Richard J. Coble, Jimmie Hinze and Theo C. Haupt, "Construction Safety and Health Management", Prentice Hall Inc., 2001.

CODE BOOKS

- 1. IS 3696 : 1987 (Part I) 1991 (PART II) -code of safety for Scaffolds and ladder.
- 2. IS 3764 : 1992 Code of Safety for Excavation work.
- 3. IS 4081 : 1986 Code of Safety for blasting and related drilling operations.
- 4. IS 7293 : 1974 Safety Code for Working with Construction Machinery.
- 5. IS 13416 : 1992 (Part I to V)- Preventive measures against Hazards at work places.
- 6. IS 15883 : 2009 (Part I) Construction Project Management.
- 7. SP 70 : 2001, Hand Book of Construction Safety Practices, Bureau of Indian Standards, New Delhi.

	Mapping of course objectives with Programme Outcomes: (1/2/3 indicates strength of correlation) 3- strong,2-Medium, 1-Weak													
	Programme Outcomes (POs)													
Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	-	-	2	1	-	1	1	2	-	-	2	2	-	2
CO2	-	-	2	1	-	2	1	1	-	-	-	1	-	2
CO3	-	-	2	1	-	1	1	1	-	-	2	2	-	2
CO4	-	-	2	2	-	1	1	1	-	-	2	2	-	2
CO5	-	-	2	2	-	3	3	2	-	-	-	1	-	2

Approved BOARD OF STUDIES

FINANCIAL MANAGEMENT

COURSE OBJECTIVES

- To familiarize the student with a wide variety of financial decision making
- To familiarize the situations focusing on financial management and accounting.
- To prepare and appraise financial statements
- To use financial calculator and excel in a variety of financial problems
- To estimate cash flows from a project

UNIT I INTRODUCTION TO FINANCIAL ACCOUNTING, BOOK KEEPING & RECORDING

Meaning, Scope and importance of Financial Accounting. Financial Accounting - Concepts and conventions, classification of accounts, Rules and principles governing Double Entry Book-keeping system, Meaning, Preparation of Journal, Ledger, Cash book & Trial balance. (Practical application on tally)

UNIT II FINANCIAL STATEMENT PREPARATION, ANALYSIS & INTERPRETATION 9

Preparation of financial statement and Profit & Loss Account, Balance Sheet., Ratio Analysis - classification of various ratios (Calculation on Excel)

UNIT III INTRODUCTION TO FINANCIAL MANAGEMENT

Concept of business finance, Goals & objectives of financial management, Sources of financing - LONG TERM: shares, debentures, term loans, lease& hire purchase, retained earnings, public deposits, bonds (Types, features & utility), SHORT TERM: bank finance, commercial paper, trade credit & bills discounting, INTERNAL: Retained earnings,

UNIT IV WORKING CAPITAL MANAGEMENT

Concept of working Capital, significance, types; Adequacy of working capital, Factors affecting working capital needs, Financing approaches for working capital, Methods of forecasting working capital requirements, meaning &importance of accounts receivable.(Excel based)

UNIT V TIME VALUE OF MONEY & CAPITAL BUDGETING

Concept of time value of money, Compounding & discounting; Future value of single amount & annuity, present value of single amount & annuity; Practical application of time value technique. Capital budgeting - Nature and significance, techniques of capital budgeting – Pay Back Method, Accounting rate of return, Internal Rate of Return, DCF, Net Present Value and profitability index. (Application on Excel)

TOTAL: 45 PERIODS

3003

9

9

9

COURSE OUTCOMES

At the end of this course, the students will be able to

- understand and define basic terminology used in finance and accounts
- prepare and appraise financial statements
- compare and appraise theories that underlie current thinking in accounting, finance and investment; and evaluate how these theories can be and are applied in practical situations
- estimate cash flows from a project, including operating, net working capital, and capitalspending
- estimate the required return on projects of differing risk and how to use the required returnin evaluating investment decisions

REFERENCES

- 1. Financial, Cost & Management Accounting: Dr. P. Pariasamy, HH Publication
- 2. Financial Management: Khan & Jain, Tata McGraw Hill
- 3. Financial Management: Dr. P. C. Tulsian, S. Chand.
- 4. Financial Management: Ravi Kishore, Taxmann

	Mapping of course objectives with Programme Outcomes: (1/2/3 indicates strength of correlation) 3- strong,2-Medium, 1-Weak														
	Programme Outcomes (POs)														
Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	
CO1	-	-	-	-	-	-	-	3	1	2	2	2	-	-	
CO2	-	-	-	-	-	-	-	3	1	2	2	2	-	-	
CO3	-	-	-	-	-	-	-	2	1	2	2	2	-	-	
CO4	-	-	-	-	-	-	-	2	1	2	2	2	-	-	
CO5	-	-	-	-	-	-	-	2	1	2	2	2	-	-	

ELECTIVE IV

PSE16451

DESIGN OF SUB STRUCTURES

3003

9

9

9

9

COURSE OBJECTIVES

- To assess the soil condition at a given location in order to suggest suitable foundation based upon bearing capacity.
- To compose the design of different type of shallow foundations like isolated, raft and combined footing.
- To familiarize with the design of pile foundation and pile caps.
- To outline the design of well and caissons foundations.
- To categorize various types of design of tower foundations.

UNIT I SITE INVESTIGATION, SELECTION OF FOUNDATION AND BEARINGAPACITY 9

Objectives - Methods of exploration - Depth of exploration - Sample disturbance - Factors governing location and depth of foundation - In situ testing of Soils - Plate load test; Geophysical methods - Selection of foundation-Bearing capacity of shallow foundations by Terzaghi's theory, Meyerhof's theory, and codal provisions - Bearing capacity of footing subjected to inclined and eccentric loading – Problems; Types of shear failure - General principles of foundation design – Foundations on expansive soil.

UNIT II DESIGN OF SHALLOW FOUNDATIONS

Types of shallow foundations - General principles of design of reinforced concrete shallow foundations -Structural design of isolated and combined footing; Structural design of rafts by conventional method; Principles of design of buoyancy raft and basement (no design problems).

UNIT III PILE FOUNDATION

Pile foundations - Types - General principles of design - Estimation of load capacity of piles by static and dynamic formulae - Detailing of reinforcement as per IS 2911; Design of Piles and Pile caps; Settlement analysis of pile groups - Negative skin friction - Pile load tests.

UNIT IV WELL AND CAISSON FOUNDATIONS

Well and caisson foundations - Structural elements of Caisson and Well foundations - Elements of well foundation - Forces acting on Caisson and well foundations; Design of individual components of Caisson and well foundation(only forces acting and design principles) - Sinking of well - Shifts and tilts in well foundations - Preventive measures.

UNIT V FOUNDATIONS OF TRANSMISSION LINE TOWERS

Introduction - Necessary information - Forces on tower foundations - General design criteria - Choice and type of foundation - Design procedure -Types of Foundations - Design of foundation for transmission towers.

TOTAL: 45 PERIODS

COURSE OUTCOMES

At the end of this course, the students will be able to

- attain the perception of site investigation to select suitable type of foundation based on soil category
- design concepts of shallow foundation
- select suitable type of pile for different soil stratum and in evaluation of group capacity by formulation
- design different types of well foundation
- design the concepts of transmission line tower foundation

REFERENCES

- 1. Winterkorn. H. F., and Fang, H. Y., "Foundation Engineering Hand Book Van Nostrard Reinhold 1990.
- Tomlinson. M.J. and Boorman, R., "Foundation design and construction", VI edition, ELBS Longman, 2001.
- 3. Nayak. N.V., "Foundation design manual for practicing engineers", Dhanpat Rai and Sons, 1985.
- 4. Arora. K.R, "Soil Mechanics & Foundation Engineering", Standard Publishers & Distributors, 2005.
- 5. "Dynamics of Bases and Foundations" by Barken.McGraw Hill Company.

CODE BOOKS

- 1. IS 2911 : Part 1 : Sec 1 : 1979 Code of practice for design and construction of pile foundations: Part 1 Concrete piles, Section 1 Driven cast in-situ concrete piles
- IS 2911 : Part 1 : Sec 2 : 1979 Code of practice for design and construction of pile foundations: Part 1 Concrete piles, Section 2 Bored cast-in-situ piles
- 3. IS 2911 : Part 1 : Sec 3 : 1979 Code of practice for design and construction of pile foundations: Part 1 Concrete piles, Section 3 Driven precast concrete piles.
- 4. IS 2911 : Part 1 : Sec 4 : 1984 Code of practice for design and construction of pile foundations: Part 1 concrete piles, Section 4 Bored precast concrete piles.
- 5. IS 2911 : Part 2 : 1980 Code of practice for designing and construction of pile foundations: Part 2 Timber piles.
- 6. IS 2911 : Part 3 : 1980 Code of practice for design and construction of pile foundations: Part 3 Under reamed piles
- 7. IS 2911 : Part 4 : 1985 Code of practice for design and construction of pile foundations: Part 4 Load test on piles
- 8. IS 6403 : 1981 Code of practice for determination of bearing capacity of shallow foundations

WEB LINKS

- 1. http://theconstructor.org/geotechnical/site-investigation-or-soil-exploration/312/
- http://www.gic-edu.com/908/Distance--Shallow-Foundation-Design-Settlement-Analysis-Workshop-12-PDHs
- 3. http://www.nptel.ac.in/downloads/105104137/

	Mapping of course objectives with Programme Outcomes: (1/2/3 indicates strength of correlation) 3- strong,2-Medium, 1-Weak													
~		Programme Outcomes (POs)												
Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	-	-	-	2	2	-	-	-	-	2	-	2
CO2	3	2	-	-	-	2	2	-	-	-	-	2	-	2
CO3	3	2	-	-	-	2	2	-	-	-	-	2	-	2
CO4	3	2	-	-	-	2	2	-	-	-	-	2	-	2
CO5	3	2	-	-	-	2	2	-	-	-	-	2	-	2

COURSE OBJECTIVES

- To define the errors in measurement and the principles of measurement using various electronic and physical testing machines.
- To dramatize with vibrating measuring instruments and digital and electronic display using different sensors.
- To define the wind flow measurement and pressure measurement and scale different models using direct model study and indirect model study.
- To measure the distress in concrete structures using various electrical and electronic machineries.
- To test various civil engineering structures using Non Destructive Testing methodologies.

UNIT I FORCES AND STRAIN MEASUREMENT

Choice of Experimental stress analysis methods, errors in measurements - Strain gauge - principle - types, performance and uses- Hydraulic jacks and pressure gauges - Electronic load cells - Proving Rings - Calibration of Testing Machines; Long-term monitoring - Vibrating wire sensors- Fibre optic sensors.

UNIT II VIBRATION MEASUREMENTS

Characteristics of structural vibrations - Linear variable differential Transformer (LVDT) - Transducers for velocity and acceleration measurements - Vibration meter - Seismographs - Vibration Analyzer - Display and recording of signals - Cathode Ray Oscilloscope - XY Plotter - Chart Plotters; Digital data Acquisition systems.

UNIT III ACOUSTICS AND WIND FLOW MEASURES

Principles of Pressure and flow measurements - Pressure transducers - Sound level meter - Venturimeter and flow meters - Wind tunnel and its use in structural analysis - Structural modeling - Direct Model Study and Indirect Model study.

UNIT IV DISTRESS MEASUREMENTS AND CONTROL

Diagnosis of distress in structures - Crack observation and measurements - Corrosion of reinforcement in concrete - Half cell, construction and use; Damage assessment - Controlled blasting for demolition; Techniques for residual stress measurements.

UNIT V NON DESTRUCTIVE TESTING METHODS

Load testing on structures, buildings, bridges and towers - Rebound Hammer - Acoustic emission - Ultrasonic testing principles and application - Holography - Use of laser for structural testing - Brittle coating, Advanced NDT methods - Ultrasonic pulse echo, Impact echo, impulse radar techniques, GECOR - Ground penetrating radar (GPR).

TOTAL :45 PERIODS

3003

9

9

9

9

COURSE OUTCOMES

At the end of this course, the students will be able to

- choose the methodology of measuring errors and strains and calibrate the machineries and equipment used in the laboratory
- operate various vibration measuring instruments and analyse the structures using digital display unit
- indicate the model using direct and indirect model analysis (Using Buckingham PI Theorem)
- measure distress in the structures using various electronic equipment
- employ advanced NDT methods in accessing the load testing of structures

REFERENCES

- 1. Sadhu Singh, "Experimental Stress Analysis", Khanna Publishers, New Delhi, 1996.
- 2. Ganesan T.P., "Model Analysis of Structures", Universities Press (India) Ltd 2005.
- 3. Dalley .J.W and Riley.W.F, "Experimental Stress Analysis", McGraw Hill Book Company, N.Y. 1991.
- 4. Srinath.L.S, Raghavan.M.R, Ingaiah.K, Gargesha.G, Pant.B and Ramachandra.K, "Experimental Stress Analysis", Tata McGraw Hill Company, New Delhi, 1984.
- 5. Sirohi.R.S., Radhakrishna.H.C, "Mechanical Measurements", New Age International (P) Ltd. 1997.

WEB LINKS

- 1. http://textofvideo.nptel.iitm.ac.in/112106068
- 2. http://nptel.ac.in/downloads/112104039
- 3. http://nptel.ac.in/courses/Webcourse-contents/IIT-Delhi/Environmental%20Air%20Pollution/ air%20pollution%20(Civil)/Module-2/2.html

	Mapping of course objectives with Programme Outcomes: (1/2/3 indicates strength of correlation) 3- strong,2-Medium, 1-Weak													
Programme Outcomes (POs)														
Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	-	-	-	2	2	-	-	-	-	2	-	2
CO2	3	2	-	-	-	2	2	-	-	-	-	2	-	2
CO3	3	2	-	-	-	2	2	-	-	-	-	2	-	2
CO4	3	2	-	-	-	2	2	-	-	-	-	2	-	2
CO5	3	2	-	-	-	2	2	-	-	-	-	2	-	2

PSE16453 COMPUTER AIDED ANALYSIS AND DESIGN OF STRUCTURES 3003

COURSE OBJECTIVES

- To familiarize with graphic primitives, transformations and 2-D drafting of computer graphics.
- To get practiced with computer methods of structural analysis.
- To understand the structural design concepts.
- To familiar with linear programming and CPM and PERT.
- To inculcate the students with artificial intelligence.

UNIT I COMPUTER GRAPHICS

Graphic primitives - Transformations - Basics of 2-D drafting - Modeling of curves and surfaces – Wire frame modeling - Solid modeling - Graphic standards - Drafting software packages and usage

UNIT II STRUCTURAL ANALYSIS

Computer aided analysis of steel and RC Structural elements - Application of software.

UNIT III STRUCTURAL DESIGN

Computer aided design of steel and RC Structural elements - Detailed drawing - Bill of materials

UNIT IV OPTIMIZATION

Application of linear programming - Simplex algorithm - Post-optimality analysis; Project scheduling - CPM and PERT applications

UNIT V ARTIFICIAL INTELLIGENCE

Introduction - Heuristic search - knowledge based expert systems – Rules and decision tables – Inference mechanisms- Simple applications - Genetic algorithm and applications; Principles of Neural network - Architecture and applications of KBES - Expert system shells.

TOTAL :45 PERIODS

9

9

9

9

9

COURSE OUTCOMES

At the end of this course, the students will be able to

- be familiar with 2 D drafting and can use drafting software
- perform structural analysis using analysis package
- design the structures with computer methodologies
- optimize the structural design with various computer packages and graphics
- apply artificial intelligence to real life applications

- 1. Krishnamoorthy C.S and Rajeev S., "Computer Aided Design", Narosa Publishing House, New Delhi, 2005.
- 2. Groover M.P. and Zimmers E.W. Jr.," CAD/CAM, Computer Aided Design and ManufacturiPrentice Hall of India Ltd, New Delhi, 2006.
- 3. Harrison H.B., "Structural Analysis and Design Vol.I and II", Pergamon Press, 1991
- 4. Rao. S.S., " Optimisation Theory and Applications ", Wiley Eastern Limited, New Delhi, 2009.
- 5. Richard Forsyth (Ed.), "Expert System Principles and Case Studies", Chapman and Hall, 1996.

WEB LINKS

- 1. http://www.colorado.edu/engineering/cas/courses.d/IFEM.d/
- 2. http://link.springer.com/article/10.1007%2Fs40069-012-0027-7#page-1
- 3. http://www.civil.northwestern.edu/people/bazant/PDFs/Papers/S12.pdf

	Mapping of course objectives with Programme Outcomes: (1/2/3 indicates strength of correlation) 3- strong,2-Medium, 1-Weak													
a	Programme Outcomes (POs)													
Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2	2	2	-	3	-	-	-	-	-	-	2	1	1
CO2	2	2	2	-	3	-	-	-	-	-	-	2	1	2
CO3	2	2	2	-	3	-	-	-	-	-	-	2	1	1
CO4	2	2	2	-	3	-	-	-	-	-	-	2	1	2
CO5	2	2	2	-	3	-	-	-	-	-	-	2	1	2

DESIGN OF BRIDGES

COURSE OBJECTIVES

- To study the various bridge forms and typical loadings on the bridges.
- To get familiarized with the design of short span bridges.
- To possess knowledge on the design concepts of long span bridges.
- To design the prestressed concrete bridges.
- To understand the concept of designing the substructure for bridges, plate girder to IRC loadings, foundation for bridges and bearings

UNIT I DESIGN PRINCIPLES

General basic bridge forms - Beam, arch, suspension, various types of bridges, selection of type of bridge and economic span length, drainage, road, kerb, classification, investigation and planning; Design loads for bridges - Dead load, live load, IRC loading, IRS loading, Aashto loading, wind load, longitudinal forces, centrifugal forces, buoyancy, water current forces, thermal forces deformation and horizontal forces

UNIT II SHORT SPAN BRIDGES

Design of culvert, Deck slab bridge - T - Beam girder bridge - Pigeaud's Theory - Courbon's Method

UNIT III LONG SPAN BRIDGES

Design principles of continuous bridges - Box girder bridges and balanced cantilever bridges.

UNIT IV DESIGN OF PRESTRESSED CONCRETE BRIDGES

Flexural and Torsional parameters – Courbon's Theory - Distribution Coefficient by exact analysis - Design of girder section - maximum and minimum prestressing forces; Eccentricity - Live load and dead load shear forces - Cable Zone in Girder - Check for stresses at various sections - Check for diagonal tension - Diaphragms - End Block - Short term deflections.

UNIT V DESIGN OF PLATE GIRDER BRIDGES, BEARINGS AND SUBSTRUCTURES 9

Design of riveted and welded plate girder bridges - Wind effects - Main section, splicing, curtailment, stiffeners - Different types of bearings; Design of bearings; Design of masonry and concrete piers and abutments - Types of bridge foundations - Design of foundations - Footings - Pile foundations.

TOTAL :45 PERIODS

COURSE OUTCOMES

At the end of this course, the students will be able to

- understand the design theories for super structure and sub structure of bridges
- design short span bridges
- understand the behaviour of continuous bridges, box girder bridges

9

9

9

- design prestressed concrete bridges
- design railway bridges, plate girder bridges, different types of bearings, abutments, piers and various types of foundations for Bridges

- 1. Ponnuswamy.S "Bridge Engineering", Tata McGrawHill, 2008.
- 2. Johnson Victor.D, "Essentials of Bridge Engineering", Oxford & IBH, 2007.
- 3. Jagadeesh T.R. and Jayaram .M.A., "Design of Bridge Structures", Prentice Hall of India Pvt Ltd., 2004.
- 4. Raina V.K., "Concrete Bridge Practice", Tata McGraw Hill Publishing Company, New Delhi, 1994.
- 5. Bakht.B and Jaegar.L.G., "Bridge Analysis Simplified", McGraw Hill, 1985.

CODE BOOKS

- 1. IRC:6-2010 Standard Specifications and Code of Practice for Road Bridges, Section II Loads and Stresses (Fifth Revision).
- 2. IRC:18-2000 Design Criteria for Prestressed Concrete Road Bridges (Post-Tensioned Concrete) (Third Revision).
- 3. IRC:21-2000 Standard Specifications and Code of Practice for Road Bridges, Section III Cement Concrete (Plain and Reinforced) (Third Revision).
- IRC:22-2008 Standard Specifications and Code of Practice for Road Bridges, Section VI Composite Construction (Limit States Design) (Second Revision).
- 5. IRC:24-2010 Standard Specifications and Code of Practice for Road Bridges, Steel Road Bridges (Limit State Method)Third Revision).
- 6. IRC:83-1999 (Part-I) Standard Specifications and Code of Practice for Road Bridges, Section IX -Bearings, Part I : Metallic Bearings (First Revision).
- IRC:83-1987 (Part II) Standard Specifications and Code of Practice for Road Bridges, Section IX -Bearings, Part II: Elastomeric Bearings.
- IRC:83-2002 (Part III) Standard Specifications and Code of Practice for Road Bridges, Section IX -Bearings, Part III: POT, POT-CUMPTFE, PIN and Metallic Guide Bearings.
- 9. Pigeaud"s curves

WEB LINKS

- 1. https://www.teachengineering.org/view_lesson.php?url=collection/cub_/lessons/cub_brid/cub_brid_lesso n02.xml
- 2. http://handbook.uts.edu.au/subjects/49131.html
- 3. http://www.britannica.com/technology/bridge-engineering

	Mapping of course objectives with Programme Outcomes: (1/2/3 indicates strength of correlation) 3- strong,2-Medium, 1-Weak													
	Programme Outcomes (POs)													
Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	-	-	-	-	-	-	-	-	-	-	-	3	2
CO2	2	2	-	2	-	-	-	-	-	-	-	-	3	2
CO3	2	2	3	3	-	-	-	-	-	-	-	-	3	2
CO4	2	2	2	2	-	-	-	-	-	-	-	-	3	2
CO5	3	2	3	3	-	-	-	-	-	-	-	-	3	2

