PAAVAI ENGINEERING COLLEGE, NAMAKKAL – 637 018 (AUTONOMOUS) ## **B.E. - ELECTRONICS AND COMMUNICATION ENGINEERING** ## **REGULATIONS 2019** ## **CURRICULUM** ## (CHOICE BASED CREDIT SYSTEM) ## (For the candidates admitted during the Academic Year 2019-2020) ## **SEMESTER I** | S.no | Category | Course
Code | Course
Title | Course Mode | L | T | P | C | |------|----------|----------------|----------------------------------|----------------------------------|----|---|----|----| | 1 | BS | MA19101 | Matrices and Calculus | - | 3 | 1 | 0 | 4 | | 2 | HS | EN19101 | English Communication Skills I | Integrated Theory and Laboratory | 2 | 0 | 2 | 3 | | 3 | BS | PH19101 | Engineering Physics | Integrated Theory and Laboratory | 2 | 0 | 2 | 3 | | 4 | BS | CH19101 | Engineering Chemistry | Integrated Theory and Laboratory | 2 | 0 | 2 | 3 | | 5 | ES | CS19102 | Programming in Python | Integrated Theory and Laboratory | 2 | 0 | 2 | 3 | | 6 | ES | GE19101 | Engineering Practices Laboratory | - | 0 | 0 | 4 | 2 | | | | | | TOTAL | 11 | 1 | 12 | 18 | ## **SEMESTER II** | S.no | Category | Course
Code | Course
Title | Course Mode | L | Т | P | C | |------|----------|----------------|--|----------------------------------|----|---|----|----| | 1 | BS | MA19201 | Complex Variables and Differential Equations | - | 3 | 1 | 0 | 4 | | 2 | HS | EN19201 | English Communication Skills II | Integrated Theory and Laboratory | 2 | 0 | 2 | 3 | | 3 | BS | PH19201 | Physics for Electronics Engineering | Integrated Theory and Laboratory | 2 | 0 | 2 | 3 | | 4 | BS | CH19201 | Material Chemistry | Integrated Theory and Laboratory | 2 | 0 | 2 | 3 | | 5 | ES | EC19201 | Electronic Devices and Circuits | Integrated Theory and Laboratory | 2 | 0 | 2 | 3 | | 6 | ES | EE19201 | Basic Electrical Engineering | - | 3 | 0 | 0 | 3 | | 7 | ES | ME19204 | Engineering Graphics Laboratory | - | 0 | 0 | 4 | 2 | | | | | | TOTAL | 14 | 1 | 12 | 21 | ## (COMMON TO ALL BRANCHES) #### **OBJECTIVES** To enable the students to - find the Eigenvalues and Eigenvectors of a real matrix and discuss their properties, reduce a real symmetric matrix from quadratic form to canonical form. - * acquire knowledge on single variable calculus. - explain functions of several variables, Taylor's series expansion, Jacobians and compute the maximum & minimum values. - * acquaint the student with the concepts of basic integration and integration by parts. - * explain the double & triple integrals, discuss the change of order of integration and use multiple integrals to find the area & volume. ## UNIT I MATRICES 12 Characteristic equation - Eigenvalues and Eigenvectors of a real matrix - Properties - Statement and applications of Cayley-Hamilton theorem - Diagonalisation of a real symmetric matrix by orthogonal transformation - Quadratic form - Reduction of quadratic form to canonical form by orthogonal transformation. ## UNIT II DIFFERENTIAL CALCULUS 12 Limits and Continuity, properties of limit and classification of discontinuities - Tangent problems. Differentiation - Standard forms, Successive differentiation and Leibnitz theorem. Mean value theorem - Rolle's theorem, Maxima and Minima, Concavity. ## UNIT III FUNCTIONS OF SEVERAL VARIABLES 12 Partial derivatives - Euler's theorem for homogenous functions - Total derivatives - Differentiation of implicit functions - Jacobians - Taylor's expansion - Maxima and Minima - Method of Lagrangian multipliers. ## UNIT IV INTEGRAL CALCULUS **12** Area Problem - Indefinite and definite integrals - Properties of integrals. Methods of integration - Substitution method, Integration by parts, Bernoulli's formula - Reduction formulae involving exponential and trigonometric functions. ## UNIT V MULTIPLE INTEGRALS 12 Double integration - Cartesian and polar coordinates - Change of order of integration - Change of Variables. Triple integration in Cartesian co-ordinates - Area as double integral - Volume as triple integral. ## **60** #### **OUTCOMES** At the end of the course, the students will be able to - identify the solutions of the characteristic equations and to understand the technique of diagonalizing a matrix which would render the eigen solution procedure very simple. - understand the concepts of calculus of single variate functions. - * know the functions of more than one variable, from the points of view of their differentiation, series expansions and extreme values, which are encountered in engineering studies. - understand the basic solving techniques of integration. - apply the methods of single, double and triple integration, which are needed in their studies in other areas and gain confidence to handle integrals of higher orders. #### TEXT BOOKS - 1. Grewal. B.S, "Higher Engineering Mathematics", 41st Edition, Khanna Publications, Delhi,(2011). - 2. Dr.P.Jayakumar, and Dr.B.Kishokkumar "Matrices and Calculus", Global Publishers, Chennai.,(2015). - 3. T. Veerarajan., "Engineering Mathematics", 3rd Edition, Tata McGraw Hill, (2011). - 1. James Stewart, "Calculus", 8th Edition, Cengage Learning, USA 2015 reprint. - 2. Erwin Kreyszig., "Advanced Engineering Mathematics" 10th Edition, Wiley Publications. - 3. Dass, H.K., and Er. Rajnish Verma, "Higher Engineering Mathematics", S. Chand Private Ltd., (2011). - 4. Glyn James, "Advanced Modern Engineering Mathematics", 3rd Edition, Pearson Education, (2012). - 5. Ramana B.V, "Higher Engineering Mathematics", Tata McGraw Hill Publishing Company, New Delhi, (2008). #### **Mapping of Course Outcomes with Programme Outcomes** (1/2/3 indicates strength of correlation) 3-strong, 2-Medium, 1-Weak Programme Outcomes(POs) COs PSO₁ PO3 PO9 PSO₂ PO1 PO2 PO4 **PO5** PO6 **PO7** PO8 PO10 **PO11 PO12** CO1 CO2 CO3 CO4 CO5 ## (COMMON TO ALL BRANCHES) #### **COURSE OBJECTIVES** To enable the students to - impart knowledge about the importance of vocabulary and grammar. - help the students of engineering and technology develop a strong base in the use of English. - improve the reading skills of the students so as to enable them to communicate with confidence inEnglish. - develop their basic speaking skills in delivering impromptu talks and participating in conversations with confidence. - enable the students to write / draft effective essays and emails for effective communication. ## UNITI VOCABULARYANDGRAMMAR 9 General Vocabulary - Word Formation - Prefix and suffix - Synonyms - Antonyms - Spelling - Homophones - Homonyms - Word used as Nouns and Verbs - Comparative Adjectives - Phrasal verbs - Acronyms - Abbreviations - Tenses - Cause and Effect Expressions - Subject Verb Agreement - Wh questions - Yes or No questions - Articles - Sentence Structures - Discourse Markers - Single line definition. ## UNITII LISTENING 6 Listening and transferring of information, listening to dialogues, listening to informal conversationlistening to short talks and answering questions- understanding the structure of conversations- telephone etiquette. ## UNITIII READING 3 Reading - Sub-Skills of Reading - skimming-scanning – predicting - Reading Comprehension (Reading short passages and answering multiple choice and open-ended questions) - developing hints. ## UNITIV WRITING 9 Writing - Describing - Defining - Classifying - Providing examples or evidence - Writing Introduction and Conclusion - Use of Cohesive devices and reference words - Writing essays (issue based, compare and contrast, Description, Narrative, Persuasive, Creative writing) - E-Mails (Business Correspondence, Letter Inviting delegates, Accepting, Declining) Instructions - Note-Making - Minutes of meeting - Jumbled Sentences - Interpreting visual information - Flow Chart, Pie Chart, Bar Chart(Transcoding). ## UNITY SPEAKING 3 Introducing oneself - (personal information name, background, study details, areas of interest- speaking about one's hobbies, strengths and weaknesses, role model and future ambition)- Role Play- impromptu talks. **TOTALPERIODS:** ## LIST OF EXERCISES - 1. Me-chart - 2. Roleplay - 3. Informalchat - 4. Formalconversation - 5. Narration of a story, Narrating anincident - 6. JAM - 7. Turncourt - 8. PresentationSkills ## **COURSE OUTCOMES** **TOTALPERIODS:** **30** At the end of the course, the students will be able to - use suitable vocabulary and grammar with confidence and express their ideas both in speech and writing. - listen and comprehend classroom lectures, short talks and conversations. - read, interpret and analyze a given text effectively, and use cohesive devices in spokenand written English. - understand English and converseeffectively. - write flawless sentences, essays andletters. ## **TEXT BOOKS** - N P Sudharshana, C.Savitha. English Technical Communication. Cambridge UniversityPress India Pvt.Ltd, NewDelhi.2016. - 2. Mahalakshmi.S.N. English and Workbook for Engineers. V.K. Publications, Sivakasi.2017. - 1. Raman, Meenakshi&Sangeetha Sharma. Technical Communication: Principles and Practice. Oxford University Press, New Delhi.2011. - 2. Rizvi, Ashraf. M. Effective Technical Communication. Tata McGraw-Hill, New Delhi. 2005 - 3. Rutherford, Andrea. J Basic Communication Skills for Technology. Pearson, New Delhi, 2001. | | | | | ` | _ | | | | _ | ıme Outo
2-Mediu | | ak | | | | | |-----|-----|-----------|---|---|---|------|--------|---------|--------|---------------------|---|----|---|---|--|--| | | | | | | | Prog | gramme | e Outco | mes (P | Os) | | | | | | | | COs | PO1 | | | | | | | | | | | | | | | | | CO1 | - | 2 1 2 2 1 | | | | | | | | | | | | | | | | CO2 | - | - | - | - | 2 | 3 | 2 | 3 | 1 | 3 | 1 | - | - | - | | | | CO3 | - | - | - | 3 | - | 2 | - | 2 | 2 | 2 | 2 | 2 | - | - | | | | CO4 | - | - | - | - | - | 2 | 2 | 2 | 2 | 3 | 1 | 1 | - | - | | | | CO5 | - | - | - | 2 | - | - | - | 3 | 3 | 3 | 3 | 1 | - | = | | | ## (COMMON TO ALL BRANCHES) ## **COURSE OBJECTIVES** To enable the students to - understand the basic concepts of properties of matter - acquire the
knowledge in the areas of ultrasonics and its applications - describe the dual nature of matter and applications of Schrodinger wave equation - categorize the types of laser and fiber optics - identify the different types of crystal structures and crystal growth techniques ## UNIT I PROPERTIES OF MATTER 6 **Elasticity**: Hooke's Law - Stress - Strain Diagram - Poisson's Ratio - Expressions for Poisson's ratio - Work done in stretching and twisting a wire - Twisting couple on a cylinder- Torsional pendulum - Rigidity modulus and moment of inertia. **Viscosity:** Co-efficient of viscosity and its dimensions - Rate of flow of liquid in a capillary tube - Poiseuilles' formula - Experiment to determine co-efficient of viscosity of a liquid - Variation of viscosity of a liquid with temperature - Applications of viscosity. ## UNIT II ULTRASONICS 6 Classification of Sound waves - Properties - Production of ultrasonic waves- Magnetostriction oscillator and piezoelectric oscillator - Determination of velocity of sound in liquid using acoustic grating - SONAR - Non destructive testing - Pulse echo system - Industrial Applications - Welding, drilling and cutting - Medical Applications - Sonogram. ## UNIT III MODERN PHYSICS 6 Black body radiation - Planck's theory (derivation) - Compton effect (derivation) - Matter waves - de-Broglie wavelength - Wave function - Physical significance of the wave function - Schrodinger's time independent and time dependent equations - Applications: particle in one dimensional box-degenerate and non-degenerate states. ## UNIT IV APPLIED OPTICS 6 **Laser:** Characteristics of laser - Stimulated absorption, spontaneous emission and stimulated emission - Population inversion - Pumping methods - Types of laser - Nd-YAG, CO₂ and semiconductor lasers (hetero junction) - Applications. **Optical fiber**: Principle, propagation of light through optical fiber - expressions for numerical aperture and acceptance angle - Types of optical fibers - Fiber optical communication system (block diagram) - Applications. ## UNIT V CRYSTAL PHYSICS 6 Crystalline solids and amorphous solids - Lattice - Unit cell - Crystal system - Bravais lattices - Lattice planes - Miller indices - Derivation of inter-planar spacing in cubic lattice - Calculation of number of atoms per unit cell, atomic radius, coordination number and packing factor for SC, BCC, FCC and HCP structures. Crystal Growth Techniques - Bridgman and Czochralski techniques. TOTAL PERIODS: 30 ## LIST OF EXPERIMENTS - 1. Determination of Young's modulus by non-uniform bending method. - 2. Determination of rigidity modulus Torsion pendulum. - 3. Determination of coefficient of viscosity of a liquid -Poiseuille's method. - 4. Determination of velocity of sound and compressibility of liquid Ultrasonic interferometer. - 5. Determination of wavelength and particle size using Laser. - 6. Determination of acceptance angle in an optical fiber. - 7. Determination of lattice parameters using powder XRD. TOTAL PERIODS: 30 ## **COURSE OUTCOMES** At the end of the course, the students will be able to - assess the elastic properties of the materials. - acquire the fundamental knowledge of ultrasonics. - perceive the development of modern physics and its applications. - recognize the uses of laser and the propagation of light through fiber optics. - grasp the basics of crystals, its structures and different crystal growth techniques. ## **TEXT BOOKS** - 1. R.K. Gaur and Gupta. S.L, Engineering Physics, Dhanpat Rai Publishers, 2017. - 2. Rajagopal, K, Engineering Physics, PHI learning Private Limited, 2015. - 1. Avadhanulu M.N. & Murthy, Arun T.V.S, A Textbook of Engineering Physics, Volume-I, S.Chand and Company Limited, 2018. - 2. M. Arumugam, Engineering Physics, Anuradha Publications, 2014. - 3. V.Rajendran, Engineering Physics, Tata McGraw-Hill, New Delhi, 2014. - 4. P K Palanisamy, Engineering Physics, 4th Edition, SciTech Publications, 2014. - 5. A.Marikani, Engineering Physics, PHI, New Delhi, 2013. | | | | (1/2 | | _ | | | | | gramme
ong, 2-N | | | ζ. | | | | |-----|-----|-----|------|---|---|---|--------|--------|--------|--------------------|---|---|----|---|--|--| | | | | | | | P | rogran | nmes C | Outcom | es (POs) |) | | | | | | | COs | PO1 | PO2 | | | | | | | | | | | | | | | | CO1 | 2 | 3 | 2 | | | | | | | | | | | | | | | CO2 | 2 | 3 | 3 | - | - | - | 3 | 1 | - | _ | - | 2 | - | - | | | | CO3 | - | 2 | 2 | 2 | - | - | 2 | 1 | - | _ | - | 2 | - | - | | | | CO4 | 3 | 3 | 3 | - | - | - | 3 | 2 | - | - | - | 3 | - | - | | | | CO5 | 2 | 3 | 3 | 1 | 2 | - | 3 | 1 | - | - | - | 2 | - | - | | | ## (COMMON TO ALL BRANCHES) ## **COURSE OBJECTIVES** To enable the students to - understand the water quality and its treatment methods. - acquaint the students with the basics of surface chemistry, their properties and applications. - predict the number of phases that exists in equilibrium for a system. - evaluate the interrelation between heat and work within the confines of the laws of thermodynamics. - identify the importance and preparation of nonmaterial recent developments. ## UNIT I WATER AND ITS TREATMENT 6 Hardness of water –types –expression of hardness –units –estimation of hardness of water by EDTA–boiler troubles (scale and sludge, priming and foaming) –boiler feed water –Treatments-Internal treatment (phosphate and calgon conditioning) external treatment –Ion exchange process–desalination-Reverse Osmosis- Disinfection-Break point chlorination. ## UNIT II SURFACE CHEMISTRY AND CATALYSIS 6 **Adsorption:** Types of adsorption –adsorption of gases on solids –adsorption of solute from solutions – adsorption isotherms –Freundlich's adsorption isotherm –Langmuir's adsorption isotherm –applications of adsorption on pollution abatement. **Catalysis:** Catalyst –types of catalysis-Homogenous and Heterogeneous –autocatalysis –catalytic poisoning and catalytic promoters –enzyme catalysis–Michaelis –Menten equation. ## UNIT III PHASE RULE AND ALLOYS 6 Phase rule: Introduction, and explanation of terms with examples, One Component System: Water System-Reduced phase rule- Two Component Systems- Lead- Silver system. Alloys: Introduction – Definition – properties of Alloys- Functions - Ferrous alloys- Nichrome and Stainless Steel- Heat treatment of steel: Non Ferrous alloys; Brass and Bronze. ## UNIT IV CHEMICAL THERMODYNAMICS 6 Terminology of thermodynamics-First law- Second law: Entropy- Entropy change for a reversible and irreversible process; Free energy and work function: Helmholtz and Gibbs free energy functions- Criteria of spontaneity: Derivation of - Gibbs Helmholtz Equation - Maxwell Relations- Derivation of Vant Hoff Isotherm and Isochore. ## UNIT V NANOMATERIALS 6 Basics-distinction between molecules, nanoparticles and bulk materials; size-dependent properties. Nanoscale materials properties and uses of nanocluster, rods, tubes (CNT) and wires. Preparation of nanoparticles- thermolysis, hydrothermal, solvothermal, Preparation of Carbon nanotube by chemical vapour deposition, laser ablation; applications of nanomaterials. **TOTAL PERIODS:** ## LIST OF EXPERIMENTS - 1. Determination of DO content of water sample by Winkler's method. - 2. Determination of Calcium and Magnesium in water sample by a titration method. - 3. Determination of strength of given hydrochloric acid by using pH meter. - 4. Determination of strength of acids in a mixture using conductivity meter. - 5. Conductometric titration of strong acid Vs Strong base. TOTAL PERIODS: 30 ## **COURSE OUTCOMES** At the end of the course, the students will be able to - gain practical experience in chemical process of water treatments. - identify the particle size, and the application of surface chemistry in various fields - classify the states in a equilibrium in a heterogeneous system. - know the basic concepts of internal energy, enthalpy, entropy, free energy and chemical potential. - get exposure in the recent trend in the nanofields. ## **TEXT BOOKS** - 1. Jain P.C. and Jain. M., Engineering Chemistry, 17/e, 2014 Dhanpat Rai Publishing Company, New Delhi, Reprint 2017. - 2. B.K. Sharma "Industrial Chemistry", 11th ed., (2015), Goel Publication, Meerut. ## REFERENCE BOOKS - 1. Puri B.R., Sharma L.R., Pathania, M.S. Principles of physical chemistry,15/e 2015, Vishal Publishing Co., Meerut, Reprint 2017. - 2. Atkins, P. and de Paula, J., Atkin's Physical Chemistry, 9th ed., Oxford Univ. Press, New Delhi. 2014. - 3. Dara S.S. and Umare S.S., A text book of Engineering Chemistry,12/e,2014 S.Chand and Company Limited, New Delhi,Reprint 2016. - 4. Engineering Chemistry, Wiley India Editorial Team, Wiley Eastern Pub, New Delhi 2018. - 5. M.Mohan and G.Raja, Engineering Chemistry I,2 nd edition Jai Tech Publication, Chennai (2017). - 6. R,Ravikrishnan, Engineering Chemistry -I, 6 th edition, Revised Sri Krishna Publication, Chennai (2018). | | (S/N | M/W ir | | | | | | | _ | | utcome
dium=2 | s
, W-We | ak=1. | | | | |-----|------|--|---|---|-----|------|--------|----------|-------|-------|------------------|-------------|-------|---|--|--| | ~~ | | | | | | Prog | ramm | es Out | comes | (POs) | | | | | | | | CO | PO1 | PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01 PS02 | | | | | | | | | | | | | | | | CO1 | 2 | 2 1 3 1 - 1 3 3 2 3 | | | | | | | | | | | | | | | | CO2 | - | - | 2 | - | - | 1 | - | 3 | - | 2 | - | 3 | - | - | | | | CO3 | 2 | - | 2 | - | 2 | 1 | | -3 | - | 2 | - | 3 | - | - | | | | CO4 | 2 | 2 | 2 | - | 2 | CANE | Аррі | oved | Gri | 2 | - | 3 | - | - | | | | CO5 | - | 2 | - | - | - [| 71 B | DARD O | \$T3JDIE | S 2 2 | 2 | - | 2 | - | - | | | 4070NOMOUS ## (COMMON TO AERO/AGRI/BM/CIVIL/CHEM/ECE/EEE/MECH/MCT/ME/FT/PHARMA) ## **COURSE OBJECTIVES** To enable the students to - understand the basics of computer and basic
elements of python programming. - study various looping statements, control statements and functions in python. - analyze different string operations and lists. - learn how to use tuples and dictionaries in python program. - study the exception handling mechanism and file handling. ## UNIT I BASICS OF COMPUTER AND PYTHON PROGRAMMING 6 Introduction to Computers: Generation and classification of computers – basic organization of computer – Number Systems (Binary, Decimal, Octal and Hexadecimal) – Algorithm – Flowchart – Pseudo code. Introduction to Python: Python Interpreter-Interactive and script mode -Values and types, operators, expressions, statements, precedence of operators, multiple assignments, comments. ## UNIT II CONTROL STATEMENTS AND FUNCTIONS IN PYTHON 6 **Conditional and looping Statements:** Conditional (if), alternative (if-else), chained conditional (if-else-if)-Iteration-while, for, break, continue, pass. **Functions:** Introduction, inbuilt functions, user defined functions, passing parameters, return values, recursion, Lambda functions. ## UNIT III STRINGS AND LISTS 6 Strings: String slices, immutability, string methods and operations. Lists: creating lists, list operations, list methods, mutability, aliasing, cloning lists ## UNIT IV TUPLES AND DICTIONARIES 6 **Tuples:** Tuple assignment, Operations on Tuples, lists and tuples, Tuple as return value. **Dictionaries:** operations and methods, Nested Dictionaries. ## UNIT V FILES AND MODULES 6 **Files:** Text files, reading and writing files(read number of characters, lines and words in a file), format Operator, command line arguments – errors and exceptions. **Modules:** Python Modules - Creating own Python Modules. TOTAL PERIODS 30 ## LIST OF EXPERIMENTS - 1. Implement various control statements in python. - 2. Create python programs to implement looping statements. - 3. Implement user defined functions using python. - 4. Develop python programs to perform various string operations. - 5. Develop python programs to perform operations on list. - 6. Develop python programs to work with Tuples. - 7. Create python program to implement dictionary. - 8. Implement python program to perform file operations. - 9. Implement python programs using modules. - 10. Create python program to handle exceptions. ## TOTAL PERIODS 30 ## **COURSE OUTCOMES** At the end of this course, students will be able to - classify and make use of python programming elements to solve and debug simple logical problems - experiment various control statements, looping statements and functions in python. - develop python programs using strings and lists. - implement tuples and dictionaries in python program. - create python programs to work with files and handling exceptions. ## **TEXT BOOKS** 1. Ashok NamdevKamthane, Amit Ashok Kamthane, "Programming and Problem Solving with Python", Mc-Graw Hill Education, 2018. ## **REFERENCES** - 1. Allen B. Downey, "Think Python: How to Think Like a Computer Scientist", Second edition, Updated for Python 3, Shroff / O'Reilly Publishers, 2016. - 2. Robert Sedgewick, Kevin Wayne, Robert Dondero, "Introduction to Programming in Python: An Inter-disciplinary Approach", Pearson India Education Services Pvt. Ltd., 2016. - 3. Timothy A. Budd," Exploring Python", Mc-Graw Hill Education (India) Private Ltd., 2015. - 4. Kenneth A. Lambert, "Fundamentals of Python: First Programs", CENGAGE Learning, 2012. - 5. Charles Dierbach, "Introduction to Computer Science using Python: A Computational Problem Solving Focus", Wiley India Edition, 2013. | | | | | | | | | | | ig Outco
Iedium, | | | | | |-----|-----|-----|------|------|------|---------|--------|----------|---|----------------------------|---|---|-------------|---------------------------------| | COs | | | | | Prog | ramme (| Outcom | nes(POs) |) | | | | Spe
Outo | camme
cific
comes
(Os) | | | PO1 | PO2 | PO12 | PSO1 | PSO2 | | | | | | | | | | | CO1 | 2 | 3 | 3 | 3 | 3 | | | | | | | | | | | CO2 | 3 | 2 | 3 | 3 | - | - | - | - | - | - | - | 2 | 3 | 3 | | CO3 | 2 | 3 | 1 | - | - | - | 1 | - | - | - | - | 2 | 3 | 3 | | CO4 | 3 | 3 | 3 | 3 | 1 | - | - | - | - | - | - | 2 | 1 | 3 | | CO5 | 3 | 3 | 3 | - | - | 2 | - | - | - | - | - | 3 | 3 | 2 | ## ENGINEERING PRACTICES LABORATORY (COMMON TO ALL BRANCHES) #### **COURSE OBJECTIVES** ## To enable the students to - develop their knowledge in basic civil engineering practices such as plumbing, carpentry and its tool usages. - practice some of mechanical basics such as welding, basic machining, sheet metal work, fitting. - experience with basic electrical wiring circuits - know about the electronic components, color coding signal generation, soldering practice... ## **GROUP A (CIVIL AND MECHANICAL)** ## I CIVIL ENGINEERING PRACTICE ## BUILDINGS • Study of plumbing and carpentry components of residential and industrial buildings. Safety aspects. #### PLUMBING WORKS - Study of pipeline joints, its location and functions: valves, taps, couplings, unions, reducers, elbows inhousehold fittings. - Study of pipe connections requirements for pumps and turbines. - Preparation of plumbing line sketches for water supply and sewage works. - Hands-on-exercise: - Basic pipe connections Mixed pipe material connection Pipe connections with different joining components. (e) Demonstration of plumbing requirements of high-rise buildings. ## CARPENTRY USING POWER TOOLS ONLY - a) Study of the joints in roofs, doors, windows and furniture. - b) Hands-on-exercise: Wood work, joints by sawing, planing and cutting. ## II MECHANICAL ENGINEERING PRACTICE ## WELDING - Preparation of arc welding of butt joints, lap joints and tee joints. - Gas welding practice ## **BASIC MACHINING** - Simple Turning, Facing, Thread cutting and Taper turning - Drilling Practice ## SHEET METAL WORK - Model making Trays, funnels, etc. - Different type of joints. ## FITTING - Square fitting - Vee fitting models ## **DEMONSTRATION ON** - (a) Smithy operations, upsetting, swaging, setting down and bending. Example Exercise –Production of hexagonal headed bolt. - (b) Foundry operations like mould preparation for gear and step cone pulley. **TOTAL: 30 PERIODS** ## **GROUP B (ELECTRICAL AND ELECTRONICS)** ## III ELECTRICAL ENGINEERING PRACTICE - 1. Study of electrical tools and safety measures - 2. Basic wiring practices Stair-case wiring, Fluorescent lamp wiring and Residential house wiring - 3. Measurement of electrical parameters such as voltage, current, power & power factor in RLC circuit. - 4. Measurement of energy using single phase energy meter. - 5. Earthing Practices & Measurement of earth resistance using megger. - 6. Study of electrical equipments such as iron box, induction heater. ## IV ELECTRONICS ENGINEERING PRACTICE - 1. Study of Electronic components and equipments Resistor, color coding measurement of AC signalparameter (Peak-Peak, RMS, Period, and Frequency) using CRO. - 2. Study of logic gates AND, OR, Ex-OR and NOT. - 3. Generation of Clock Signal. - 4. Soldering practice Components Devices and Circuits Using general purpose PCB. - 5. Measurement of ripple factor of HWR. - 6. Construction and verification of half adder circuit. - 7. Construction and verification of half subtractor circuit. - 8. Study of Telephone, F.M Radio and Cell Phone. **TOTAL: 30 PERIODS** ## **COURSE OUTCOMES** At the end of this course, students will be able to - use the tools for plumbing and carpentry works - prepare models by -welding, machining, sheet metal and fitting - construct electrical wiring circuit and demonstrate practically - analyse the signal generation, solder the electronic components based on the circuits ## **CO - PO Mapping** | | | | | _ | | | | _ | | Outcome
g, 2-Medi | | eak | | | | | |-----|---|---|---|---|---|----|--------|--------|--------|----------------------|---|-----|---|---|--|--| | COs | | | | | | Pr | ogramı | me Out | comes(| POs) | | | | | | | | | PO1 | PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO 10 PO11 PO12 PSO1 PSO2 | | | | | | | | | | | | | | | | CO1 | 2 2 2 2 2 2 2 3 | | | | | | | | | | | | | | | | | CO2 | 2 | 2 | 2 | 2 | 2 | - | - | - | 1 | - | - | 1 | 2 | 3 | | | | CO3 | 2 | 2 | 2 | 2 | 2 | - | - | - | 1 | - | - | 1 | 2 | 3 | | | | CO4 | 2 | 2 | 2 | 2 | 2 | - | - | - | 1 | - | - | 1 | 2 | 3 | | | ## MA19201 COMPLEX VARIABLES AND DIFFERENTIAL EQUATIONS 3 1 0 4 ## (COMMON TO ALL BRANCHES) ## **OBJECTIVES** To enable the students to - discuss a wide range of basic mathematical methods for solving different types of problems arising in the fields of Science, Mathematics and Engineering - acquire sound knowledge of techniques in solving ordinary differential equations that model engineering problems - understand the concepts of vector calculus, which is applied in all engineering disciplines - * know the standard techniques of complex variable - learn the purpose of using transforms to create a new domain ## UNIT I VECTOR CALCULUS 12 Gradient, Divergence and Curl - Directional derivative - Irrotational and solenoidal vector fields - Vector integration - Green's, Gauss divergence and Stokes' theorem - Statement, Verification and Simple applications. ## UNIT II ANALYTIC FUNCTIONS 12 Functions of a complex variable - Analytic functions - Statement of Cauchy - Riemann equations - Harmonic functions and orthogonal properties - Harmonic conjugate - Construction of analytic functions - Conformal mapping : w=z+c, cz, 1/z and Bilinear transformation. ## UNIT III COMPLEX INTEGRATION 12 Complex integration - Statement and applications of Cauchy's integral theorem and Cauchy's integral formula - Taylor and Laurent expansions - Singular points - Residues - Residue theorem - Contour integration - evaluation of circular and semicircular Contour. ## UNIT IV ORDINARY DIFFERENTIAL EQUATIONS **12** Higher order linear differential equations with
constant coefficients - Method of variation of parameters - Cauchy's and Legendre's linear equations - Simultaneous first order linear equations with constant coefficients. ## UNIT V LAPLACE TRANSFORM 12 Laplace transform - Transform of elementary functions - Properties - Transform of periodic functions. Definition of Inverse Laplace transforms - Statement and applications of Convolution theorem - Initial and Final value theorems - Solution of linear ODE of second order with constant coefficients by Laplace transforms. TOTAL PERIODS: **60** ## **OUTCOMES** At the end of the course, the students will be able to - study the basics of vector calculus comprising of gradient, divergence and curl and line, surface and volume integrals and the classical theorems. - * know the concept of analytic functions and its properties and apply it in conformal mapping. - spain knowledge in the basics of complex integration and the concept of contour integration which is an important tool for evaluation of certain real integrals. - solve differential equations. - gain sufficient exposure to find solution of certain linear differential equations by Laplace transform. ## **TEXT BOOKS** - 1. Grewal. B.S, "Higher Engineering Mathematics", 41st Edition, Khanna Publications, Delhi,(2011). - 2. Dr.P.Jayakumar, and Dr.B.Kishokkumar, "Differential Equations and Complex Analysis", GlobalPublishers, Chennai., (2015). - 3. Erwin Kreyszig., "Advanced Engineering Mathematics" $10^{\rm th}$ Edition, Wiley Publications. - 1. Dass, H.K., and Er. Rajnish Verma, "Higher Engineering Mathematics", S. Chand Private Ltd., (2011). - 2. T. Veerarajan., "Engineering Mathematics", 3rd Edition, Tata McGraw Hill, 2011. - 3. Peter V. O'Neil, "Advanced Engineering Mathematics", 7th Edition, Cengage learning, (2012). - 4. Ramana B.V, "Higher Engineering Mathematics", Tata McGraw Hill Publishing Company, New Delhi, (2008). | | | | | _ | | | | | | mme O
g, 2-Med | | | | | | | |-----|-------------------------|---|---|---|---|---|---|---|---|-------------------|---|---|---|---|--|--| | CO- | Programme Outcomes(POs) | | | | | | | | | | | | | | | | | COs | PO1 | | | | | | | | | | | | | | | | | CO1 | 3 3 2 3 2 3 3 | | | | | | | | | | | | | | | | | CO2 | 3 | | | | | | | | | | | | | | | | | CO3 | 3 | 3 | 3 | 2 | - | - | - | - | - | - | - | 2 | 3 | 3 | | | | CO4 | 3 | 2 | 3 | 3 | - | - | - | - | - | - | - | 3 | 3 | 3 | | | | CO5 | 3 | 3 | 2 | 3 | - | - | - | - | - | - | - | 3 | 3 | 3 | | | ## (COMMON TO ALL BRANCHES) ## **COURSE OBJECTIVES** To help the students of engineering and technology to - enhance their ability to listen, read, write and speakEnglish. - comprehend and write essays and prepare short project reports related to their branches of specialization. - enhance their ability to read and comprehend technicaltexts. - make effective presentations on topics in engineering andtechnology. - participate successfully in GroupDiscussions. ## UNITI VOCABULARYANDGRAMMAR 9 General Vocabulary - Prefixes & Suffixes - One word substitutions - Active Voice and Passive Voice - Collocations - Fixed expressions (adhere to, on the part of etc.) - Idioms and Phrases - Compound Nouns - Numerical Expression - Preposition - Direct into Indirect Speech - If Conditionals - Purpose expression - Editing - Extended Definitions - Simple, Compound and ComplexSentences. ## UNITH LISTENING 3 Listening to news and announcements, listening to a telephone conversation- Listening to model interviews - TED Talks. ## UNITIII READING 6 Reading - Developing analytical skills, Deductive and inductive reasoning - Extensive reading - Critical reading- Reading articles in newspapers, journals. ## UNITIV WRITING 9 Check list – Recommendation - Writing a job application - Resume (E-mail format) - Technical Report-Writing (Industrial Visit report, Accident report, Feasibility report, Survey report, Mini project proposal) - Paragraph Writing - Advertisement writing - Designing poster - Film Book review. ## UNITY SPEAKING 3 Syllable - Stress - Intonation - Silent Letters - Presentations on a given topic - Mini presentation in small groups - Group discussion - Interview Techniques - mock interviews. ## TOTALPERIODS: #### LIST OF EXERCISES - 1. ShipWreck - 2. Introducing a product (SpotLight) - 3. Vocabulary Buildinggames - 4. Description of an event /Competition - 5. Master of Ceremony (MC, Welcome Address, Vote of thanks, prizedistribution) - 6. MC (Introducing a Guest, Feed back of theparticipant) - 7. GD - 8. MockInterview **TOTALPERIODS:** 30 ## **COURSE OUTCOMES** At the end of the course, the students will be able to - speak with clarity and confidence. - read, interpret and analyse a given text. - write comprehensive reports, job applications and draft effective e-mails. - make effective presentations using power point. - participate successfully in GroupDiscussions. ## **TEXT BOOKS** - 1. N P Sudharshana, C.Savitha. English Technical Communication. Cambridge UniversityPress India Pvt.Ltd, NewDelhi.2016. - Mahalakshmi.S.N. English and Workbook for Engineers. V.K. Publications, Sivakasi.2017. - 1. Raman, Meenakshi&Sangeetha Sharma. Technical Communication: Principles and Practice. Oxford University Press, New Delhi.2011. - 2. Rizvi, Ashraf. M. Effective Technical Communication. Tata McGraw-Hill, New Delhi.2005 - 3. Rutherford, Andrea. J Basic Communication Skills for Technology. Pearson, New Delhi. 2001. | | | | | | , | | | | _ | me Outo
2-Mediu | | ak | | | | | |-----|-----|-----------|---|---|---|------|--------|---------|--------|--------------------|---|----|---|---|--|--| | | | | | | | Prog | gramme | e Outco | mes (P | Os) | | | | | | | | COs | PO1 | | | | | | | | | | | | | | | | | CO1 | - | 2 - 3 2 1 | | | | | | | | | | | | | | | | CO2 | - | - | 2 | - | - | 3 | 2 | 3 | 1 | 3 | - | - | - | - | | | | CO3 | - | - | - | 3 | - | 2 | - | 2 | 2 | 2 | 2 | 2 | - | - | | | | CO4 | - | - | - | - | - | 2 | 2 | 2 | 3 | 3 | - | - | - | - | | | | CO5 | - | - | - | 2 | - | - | - | 3 | 3 | 3 | 3 | - | - | - | | | ## (COMMON TO ECE/EEE/ME/BM) ## **COURSE OBJECTIVES** To enable the students to - gain knowledge about the conduction properties of metals - correlate better understanding on carrier concentration and its variations with temperature in an intrinsic semiconductor - analyze ferro magnetic materials, different polarization mechanisms and its applications - recognize the properties of advanced engineering materials and its uses - describe the quantum mechanical behavior of materials and its device applications ## UNIT I CONDUCTING MATERIALS 6 Conductors - Types of conducting materials - Classical free electron theory of metals: Postulates - Derivation of electrical conductivity and thermal conductivity - Wiedemann-Franz law and its verifications - Lorentz number - Merits and demerits of classical free electron theory - Quantum free electron theory: Fermi-Dirac distribution function - Effect of temperature on Fermi function - Density of energy states-Carrier concentration in metals. ## UNIT II SEMICONDUCTING MATERIALS 6 Types of semiconductors - elemental and compound semiconductor - Intrinsic semiconductor: Expressions for density of electrons, holes and carrier concentration - Fermi level -Variation of Fermi level with temperature - Electrical conductivity - Band gap determination - Extrinsic semiconductors: n-type and p-type semiconductors (Qualitative) - Hall effect - Determination of Hall coefficient - Applications. ## UNIT III MAGNETIC AND DIELECTRIC MATERIALS 6 **Magnetic Materials:** Domain theory of ferromagnetism - Hysteresis - Soft and hard magnetic materials - Ferrites - Applications. **Dielectric Materials:** Types of polarization - Expression for electronic and ionic polarization - orientation and space charge polarization - Langevin Debye equation - Different types of dielectric breakdown - Applications (Capacitor and transformer). ## UNIT IV ADVANCED ENGINEERING MATERIALS 6 **Metallic glasses:** preparation, properties and applications. Shape memory alloys (SMA): Characteristics, properties of NiTi alloy, application. **Nanomaterials:** properties and applications -NLO materials –Birefringence- optical Kerr effect – Classification of Biomaterials and its applications. ## UNIT V NANOELECTRONICS AND DEVICES 6 Scaling trends in CMOS and limitations-Quantum confinement -Density of states for 1D, 2D and 3D nanostructures(qualitative) _Tunneling Through a Potential Barrier- Coulomb Blockade-Resonant Tunneling Diodes (RTD's) - Single electron Phenomenon- Single electron Transistor- Single Electron Transistor Logic- Semiconductor Nanowire FETs- Molecular FET. TOTAL PERIODS: 30 ## LIST OF EXPERIMENTS - 1. Determination of Hall coefficient of semiconductor material - 2. Determination of band gap of a semiconductor. - 3. Determination of dielectric constant of the material at different temperatures. - 4. Determination of thermal conductivity of a bad conductor Lee's Disc method. - 5. Determination of Hysteresis losses in a Ferromagnetic material. - 6. To Study of switching Behavior of CMOSFET. - 7. To study I-V characteristic of MOSFET TOTAL PERIODS: 30 ## **COURSE OUTCOMES** At the end of the course, the students will be able to - select the metals required for specific applications in the field of engineering and technology. - acquire the knowledge of an intrinsic semiconductors and determinations of hall co-efficient. - obtain the knowledge of ferromagnetic materials, polarization process and its uses. - grasp the functioning of advanced engineering materials for NLO applications. - relate the different types of quantum structures and its nanoelectronics device applications. ## **TEXT BOOKS** - 1. A.Marikani, Material Science, PHI, New Delhi, 2017. - 2. R.K. Gaur and Gupta. S.L, Engineering Physics, Dhanpat Rai Publishers, 2017. - 1. Umesh K Mishra & Jasprit Singh, Semiconductor Device Physics and Design, Springer,2008. - 2. Wahab, M.A. -Solid State Physics: Structure and Properties of
Materials. Narosa Publishing House, 2009. - 3. P K Palanisamy, Material Science, SciTech Publications, 2015. - 4. Kasap, S.O. -Principles of Electronic Materials and Devices, McGraw-Hill Education, 2017. - 5. S.O.Pillai, Solid State Physics. New Academic Science, Publishers, 2018. | | | (| | | | | | | _ | mme Ou | | Veak | | | | | | |-----|-----|-----|--|---|---|---|--------|--------|-------|----------|---|------|---|---|--|--|--| | | | | | | | P | rogran | nmes O | utcom | es (POs) | | | | | | | | | COs | PO1 | PO2 | 2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO1 PSO2 | | | | | | | | | | | | | | | | CO1 | 2 | 3 | | | | | | | | | | | | | | | | | CO2 | 2 | 3 | 1 | - | - | 2 | 3 | 2 | = | - | - | 2 | - | - | | | | | CO3 | 2 | 3 | 2 | - | - | 2 | 3 | 1 | = | - | - | 2 | - | - | | | | | CO4 | 2 | 2 | - | - | - | 2 | 2 | 1 | = | - | - | 2 | - | - | | | | | CO5 | 2 | 1 | - | - | - | 2 | 3 | 2 | - | - | - | 2 | - | = | | | | ## (COMMON TO ECE/EEE/CSE/IT/ME/MCT) #### **COURSE OBJECTIVES** To enable the students to - understand the preparation and properties of polymers and elastomers - assess the reaction takes place in energy derivation. - recognize and comprehend the relation of electrochemistry with corrosion. - make conversant with combustion and calorific values of fuels. - identify the importance and preparation of new materials recent development. ## UNIT I POLYMERS AND ELASTOMERS 6 Introduction-Classification of polymer – polymerization-Mechanisms of polymerization (Free Radical and Ionic)—Plastics-Thermoplastics – Thermosetting plastics – Engineering plastics-preparation, properties and uses (Teflon, Lexan, Polyamides) - Advanced Polymeric materials—Liquid crystal polymers – Conductive polymers(Poly acetylene)- Elastomers - Applications. ## UNIT II ENERGY STORAGE MATERIALS 6 Energy-Classification- Renewable energy-solar energy conversion-solar cells-solar heater-wind energy-Tidal energy-Ocean thermal energy-Fuels cells-hydrogen-oxygen fuel cell-Batteries-Types- alkaline batteries-lead acid-nickel cadmium and lithium ion batteries. ## UNIT III ELECTROCHEMISTRY AND CORROSION 6 Electrochemical cells-types-reversible and irreversible cells –EMF–measurement of emf-Single electrode potential (oxidation and reduction) –Nernst Equation (derivation) –electrochemical series—significance. Corrosion-Types-Pilling-Bedworth rule – Mechanism of Dry corrosion and wet corrosion-Types of electrochemical corrosion. ## UNIT IV FUELS AND COMBUSTION 6 Fuels: Introduction -classification of fuels -coal -analysis of coal (proximate and ultimate) -carbonization - manufacture of metallurgical coke (Otto Hoffmann method) -petroleum -knocking -octane number -diesel oil -cetane number -natural gas -compressed natural gas (CNG) -liquefied petroleum gases (LPG) -power alcohol. Combustion of fuels: Introduction -calorific value -higher and lower calorific values-theoretical calculation of calorific value-flue gas analysis (ORSAT Method). ## UNIT V NEW MATERIALS AND APPLICATIONS 6 Introduction-composites classification-Particle- reinforced composites- Fiber- reinforced composites- Fiber-glass- reinforced composites- Reinforced plastic matrix –composites- metal matrix –fiber composites- hybrid composites-processing of fiber- reinforced composites-pultrution, prepeg production process -Structural composites- sandwich panels. **TOTAL PERIODS:** ## LIST OF EXPERIMENTS - 1. Determination of molecular weight of a polymer by Oswald viscometer. - 2. Determination of Calcium and magnesium in water by a titration method. - 3. Estimation of copper content of the given solution by EDTA method. - 4. Estimation of iron content of the given solution using potentiometer. - 5. Determination of Cloud point, pour point and oiliness of fuels. TOTAL PERIODS: 30 ## **COURSE OUTCOMES** At the end of the course, the students will be able to - evaluate the importance of advanced polymers in engineering fields. - know the basic concepts of renewable energy and its ecofriendlyl. - indentify the control methods of corrosion on metals. - estimate the high calorific value of fuels and its usage - identify the composition and formation of reinforced materials. ## **TEXT BOOKS** - 1. Jain P.C. and Jain. M., Engineering Chemistry, 17th Edition, Dhanpat Rai Publishing Company, New Delhi, Reprint 2017. - 2. Materials Science and Engineering, V.Raghavan, Prentice Hall of India Pvt. Ltd., (2015) - 1. Dara S.S. and Umare S.S., A text book of Engineering Chemistry, S.Chand and Company Limited, New Delhi, 2016. - 2. Raghavan V., "Material Science and Engineering," 9 th edition, Wiley India. New Delhi. (2014). - 3. Krishnamoorthy, P. Vallinayagan & K. Jaya Subramanian "Applied Chemistry", 4th ed., (2015), Tata MaGraw-Hill Publishing Co. Ltd., New Delhi. - 4. Solid state chemistry and its application; Anthony.R. West, John Wiley & Sons, Newyork. (2015) - 5. Materials Science; R.S.Khurmi and R.S.Sedha, S.Chand & Company Ltd, NewDelhi (2014). | | (S/N | A/W ir | | | | | | | _ | mme O
M-Meo | | s
, W-We | ak=1. | | | |-----|------|--|---|---|-----|-------|--------|----------|-------|----------------|---|-------------|-------|---|--| | | | | | | | Prog | ramm | es Out | comes | (POs) | | | | | | | CO | PO1 | PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO1 PSO2 | | | | | | | | | | | | | | | CO1 | 2 | 1 | 3 | 1 | - | 1 | 3 | 3 | 2 | - | - | 3 | - | - | | | CO2 | - | - | 2 | - | - | 1 | - | 3 | - | 2 | - | 3 | - | - | | | CO3 | 2 | - | 2 | - | 2 | 1 | | -3 | - | 2 | - | 3 | - | - | | | CO4 | 2 | 2 | 2 | - | 2 | CIME | Аррі | oved | GET | 2 | - | 3 | - | - | | | CO5 | - | 2 | - | - | - / | 5/1 B | DARD O | \$T3JDIE | 5 32 | 2 | - | 2 | - | - | | ## (COMMON TO ECE /ME) ## **COURSE OBJECTIVES** To enable the students to - learn the basics of diode and rectifiers - study the basics and characteristics of BJT and the basics of special semiconductor devices - understand the basics and characteristics of FET and power devices - introduce electric circuits and its analysis - impart knowledge in solving circuits using network theorems ## UNIT I SEMICONDUCTOR DIODE 6 6 PN junction diode, forward and reverse bias characteristics, Switching Characteristics. Clipping and Clamping Circuits – Voltage multipliers using diodes- Half wave and full wave rectifier. ## UNIT II BIPOLAR JUNCTION AND SPECIAL SEMICONDUCTOR DEVICES NPN -PNP -Junctions-Early effect-Current equations – Input and Output characteristics of CE, CB CC-h-parameter model, Ebers Moll Model - MESFET, Schottky barrier diode-Zener diode- PIN Diode-Varactor diode. ## UNIT III FIELD EFFECT TRANSISTORS AND POWER DEVICES 6 JFETs – Drain and Transfer characteristics, Pinch off voltage- MOSFET- Characteristics, D-MOSFET, E-MOSFET, FINFET, UJT, SCR, Diac, and Triac. ## UNIT IV BASIC CIRCUITS ANALYSIS 6 Ohm's Law – Kirchhoff's laws – DC and AC Circuits – Resistors in series and parallel circuits – Mesh current and node voltage method of analysis for D.C and A.C. circuits. ## UNIT V NETWORK THEOREMS FOR DC AND AC CIRCUITS 6 Network reduction: voltage and current division, source transformation - Thevenin and Norton Theorem - Superposition Theorem - Maximum power transfer theorem - Reciprocity Theorem. TOTAL PERIODS: 30 ## **COURSE OUTCOMES** - analyze the basic concepts of semiconductor diodes. - understand the basics and characteristics of BJT and be familiar with the concepts of special semiconductor devices - know the basics and characteristics of FET and familiar with the concepts of special semiconductor devices - analyze electrical circuits - apply circuit theorems. ## **TEXT BOOKS** - 1. J Millman, C. Halkias & Satyabrata JIT "Electronic Devices and Circuits", Tata McGraw-Hill, 2007. - 2. Donald A Neaman, "Semiconductor Physics and Devices", Third Edition, Tata Mc Graw Hill Inc.2007. - **3.** William H. HaytJr, Jack E. Kemmerly and Steven M. Durbin, "Engineering Circuits Analysis" Tata McGraw Hill publishers, 6th edition, New Delhi, 2003. - **4.** Joseph A. Edminister, MahmoodNahri, "Electric circuits", Schaum's series, Tata McGraw-Hill,New Delhi, 2001. ## **REFERENCES** - 1. Christo Papadopoulos, "Solid State Electronic Devices", Springer-Verlag, New York, 2014 - 2. Thomas L.Floyd, "Electronic Devices", Merrill, 1992 - 3. M Russell, Mersereau and Joel R. Jackson, "Circuit Analysis- A System Approach", Pearson Education, 2007. - 4. Chakrabati A, "Circuits Theory (Analysis and synthesis)", DhanpathRai& Sons, New Delhi, 1999. | | | (| | | | | | | _ | nme Out
2-Mediu | | eak | | | | | |-----|-----|--|---|---|---|------|-------|-------|--------|--------------------|---|------------|---|---|--|--| | COa | | | | | | Prog | ramme | Outco | mes(Po | Os) | | | | | | | | COs | PO1 | PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO1 PSO2 | | | | | | | | | | | | | | | | CO1 | 3 | 3 3 3 3 - 3 3 | | | | | | | | | | | | | | | | CO2 | 3 | 3 | 3 | - | - | - | - | - | - | - | 3 | - | 3 | 3 | | | | CO3 | 3 | 3 | 3 | - | - | - | - | - | - | - | 3 | - | 3 | 3 | | | | CO4 | 3 | 3 | 3 | - | - | - | - | - | - | - | 3 | - | 3 | 3 | | | | CO5 | 3 | 3 | 3 | - | - | - | - | - | - | - | 3 | - | 3 | 3 | | | #### **COURSE OBJECTIVES** To enable the students to - analyze the various DC circuits and find the circuit parameters. - introduce the AC fundamentals and three phase circuits. - familiarize the various electrical machines and measuring instruments. - study the basics of electrical wiring. - learn the basics of electrical safety. ## UNIT I DC CIRCUITS 9 Electrical circuit elements (R, L and C), voltage and current sources, Kirchhoff current and voltage laws, analysis of simple circuits with dc excitation; Superposition, Thevenin and Norton Theorems. ## UNIT II AC CIRCUITS 9 Representation of sinusoidal waveform- peak and rms values,
phasor representation, real power, reactive power, apparent power, power factor. Analysis of single-phase ac circuits consisting of R, L, C, RL, RC, RLC combinations (series and parallel), resonance; Three- phase balanced circuits, voltage and current relations in star and delta connections. ## UNIT III FUNDAMENTALS OF ELECTRICAL MACHINES AND MEASURING INSTRUMENTS 9 Construction, principle of operation, characteristic and application - single phase transformer, single phase induction motor, and DC Motor; Types of electrical measurement, Construction and operating principles - Moving coil and moving iron instruments (ammeters and voltmeters), dynamometer type watt meters and energy meters. ## UNIT IV ELECTRICAL INSTALLATIONS AND WIRING 9 Components of LT switchgear- Switch fuse unit (SFU), MCB, ELCB, types of wires and cables, systems of distribution of electrical energy, systems of wiring, choice of wiring systems, earthing; Batteries- Lead acid, Li-Ion. ## UNIT V ELECTRICAL SAFETY PRACTICES AND STANDARDS 9 Indian electricity act and rules- general safety requirements as per IE rules, electrical safety equipment's- electrical installation, ground clearance, section clearance, earthing, specifications, earth resistance, earth pit maintenance. TOTAL PERIODS: 45 ## **COURSE OUTCOMES** At the end of this course, students will be able to - implement the basic knowledge about DC Electric circuits. - apply the knowledge of AC fundamentals and AC circuits. - understand the operation of electrical machines and measuring instruments and their usage - analyze various electrical components and perform electrical wiring. - follow the Indian electricity rules and apply in electrical installations ## **TEXT BOOKS** - 1. D. P. Kothari and I. J. Nagrath, "Basic Electrical Engineering", Tata McGraw Hill, 2011. - 2. J.B.Gupta, "Basic Electrical Engineering", S.K.Kataria & Sons, 2015 ## **REFERENCES** - V.K.Mehta and Rohit Mehta, "Principles of Electrical Engineering and Electronics", S.Chand, 2014. - 2. R.Muthusubramanian and S.Salivahanan, "Basic Electrical and Electronics Engineering Fundamentals", Tata McGraw Hill, 2010. - 3. G.Nagarajan, "Basics of Electrical Electronics and Computer Engineering", A.R.Publications, 2001. - 4. B.L.Theraja and A.K.Theraja, "Electrical Technology Volume 1", S.Chand, 2010 - 5. "The Electricity Rules", Universal's Law Publishing, 2011. ## CO-PO MAPPING | Mapping of Course Outcome (CO's) with Programme Outcomes (PO's) and Programme Specific Outcomes PSO's (1/2/3 indicates strength of correlation) 3-Strong, 2-Medium, 1-Weak | | | | | | | | | | | | | | | |--|------|---|---|---|---|---|---|---|---|----|----|-------|---|---| | | PO's | | | | | | | | | | | PSO's | | | | CO's | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 1 | 2 | | CO1 | 3 | 3 | - | - | - | 3 | 3 | - | - | - | 3 | - | 3 | 3 | | CO2 | 3 | 3 | 3 | - | 3 | - | - | - | 3 | - | 3 | - | 3 | 3 | | CO3 | 3 | 3 | 3 | - | 3 | - | - | - | 3 | - | 3 | - | 3 | 3 | | CO4 | 3 | 3 | 3 | - | 3 | - | - | - | 3 | - | 3 | - | 3 | 3 | | CO5 | 3 | 3 | 3 | - | - | - | - | - | 3 | - | 3 | - | 3 | 3 | # ENGINEERING GRAPHICS LABORATORY (COMMON TO ALL BRANCHES) 0 0 ## **COURSE OBJECTIVES** To enable the students to - introduce concepts like dimensioning, conventions and standards related to Engineering drawing and imbibe knowledge on plane curves and projection of points - impart knowledge on projection of lines and plane surfaces - develop the visualization skills for understanding the projection of solids - illustrate on development of surfaces for simple solids - understand the orthographic projection and isometric view ## **Concepts and Conventions** (Not for Examination) 2 4 2 Importance of graphics in engineering applications – Use of drafting instruments – BIS conventions and specifications – Size, layout and folding of drawing sheets – Lettering and dimensioning. ## UNIT I PLANE CURVES AND PROJECTION OF POINTS 10 Basic Geometrical constructions, Curves used in Engineering Practices: Conics – Construction of Ellipse, Parabola and Hyperbola by eccentricity method – Construction of cycloid – Construction of involutes of square and circle – Drawing of tangents and normal to the above curves. Applications of above cited curves. Orthographic projection – Principles-Principal Planes - Projection of points in four quadrants. ## UNIT II PROJECTION OF LINES AND PLANES 12 Projection of straight lines (only First angle projections) inclined to both the principal planes - Determination of true lengths and true inclinations by Change of Position method. Projection of Planes (Square, Pentagon, Hexagon and Circle) inclined to both the principal planes by rotating object method. ## UNIT III PROJECTION OF SOLIDS 12 Projection of simple solids like Square Prism, Pentagonal Prism, Hexagonal Prism, Triangular Prism. Square Pyramid, Pentagonal Pyramid, Hexagonal Pyramid, Cylinder and Cone when the axis is inclined to one of the principal planes (either horizontal or vertical plane). ## UNIT IV DEVELOPMENT OF SURFACES 12 Development of lateral surfaces in simple vertical position when the cutting plane is inclined to one of the principal planes and perpendicular to the other – Prisms, pyramids cylinders and cones. ## UNIT V ORTHOGRAPHIC AND ISOMETRIC PROJETIONS 12 Representation of Three-dimensional objects – Introduction of Orthographic projection – Need for importance of multiple views and their placement – First angle projection – layout views – Developing visualization skills through multiple views from pictorial views of objects Principles of isometric projection – isometric scale –Isometric projections of simple solids and truncated solids - Prisms, pyramids, cylinders, cones - Conversion of Isometric view to orthographic projection. ## **COURSE OUTCOMES** At the end of the course, the students will be able to - perform sketching of basic curves and projection of points in four quadrants - draw the projections of straight lines and plane surfaces in given quadrant - comprehend the projection of solids in various positions in first quadrant - draw the development of surfaces. - prepare orthographic and isometric projection of simple solids. ## **TEXT BOOKS** - 1. Natrajan K.V., "A text book of Engineering Graphics", Dhanalakshmi Publishers, Chennai, 2009 - 2. Prabhakaran. S, Makesh. M, Subburam. V, "Engineering Graphics", Maruthi Publishers, Chennai, 2016 ## REFERENCE BOOKS - 1. Gopalakrishna K.R., "Engineering Drawing" (Vol. I&II combined), Subhas Stores, Bangalore, 2007. - 2. Luzzader, Warren.J. and Duff,John M., "Fundamentals of Engineering Drawing with an introduction to Interactive Computer Graphics for Design and Production, Eastern Economy Edition, Prentice Hall of India Pvt. Ltd, New Delhi, 2005. - 3. Shah M.B., and Rana B.C., "Engineering Drawing", Pearson, 2nd Edition, 2009. - 4. Venugopal K. and Prabhu Raja V., "Engineering Graphics", New Age International (P) Limited, 2008. - 5. Basant Agarwal and Agarwal C.M., "Engineering Drawing", Tata McGraw Hill Publishing Company Limited, New Delhi, 2008 ## CO - PO Mapping | Mapping of Course Outcomes with Programme Outcomes (1/2/3 indicates strength of correlation) 3-Strong, 2-Medium, 1-Weak | | | | | | | | | | | | | | | |---|-------------------------|-----|-----|-----|-----|-----|-----|------|--------|-------|------|------|------|------| | | Programme Outcomes(POs) | | | | | | | | | | | | | | | COs | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO 10 | PO11 | PO12 | PSO1 | PSO2 | | CO1 | 3 | 3 | 3 | 3 | 3 | 1 | - | - | - | - | 1 | 1 | 2 | 1 | | CO2 | 3 | 3 | 3 | 3 | 3 | 1 | - | - | - | - | 1 | 1 | 2 | 1 | | CO3 | 3 | 3 | 3 | 3 | 3 | 1 | - | - | - | - | 1 | 1 | 2 | 1 | | CO4 | 3 | 3 | 3 | 3 | 3 | 1 | - | - | - | - | 1 | 1 | 2 | 1 | | CO5 | 3 | 3 | 3 | 3 | 3 | 1 | - 0 | ERIN | 6 COLL | EGE | 1 | 1 | 2 | 1 | BOARD OF STUDIES