# PAAVAI ENGINEERING COLLEGE, NAMAKKAL – 637 018

# (AUTONOMOUS)

# B.E – AGRICULTURE ENGINEERING

# REGULATIONS 2019 CURRICULUM

(For candidates admitted during the Academic Year 2020-2021 onwards)

# (CHOICE BASED CREDIT SYSTEM) SEMESTER III

| S.No. | Category  | Course Code | Course Title                                | L  | Т | P | C  |
|-------|-----------|-------------|---------------------------------------------|----|---|---|----|
|       | Theory    |             |                                             |    |   |   |    |
| 1.    | BS        | MA20301     | Transforms And Boundary Value Problems      | 3  | 1 | 0 | 4  |
| 2.    | ES        | AI20301     | Strength of Materials                       | 3  | 1 | 0 | 4  |
| 3.    | ES        | AI20302     | Mechanics of Machines                       | 3  | 0 | 0 | 3  |
| 4.    | PC        | AI20303     | Principles and Practices of Crop Production | 3  | 0 | 0 | 3  |
| 5.    | PC        | AI20304     | Surveying and Levelling                     | 3  | 0 | 0 | 3  |
| 6.    | MC        | MC20301     | Value Education                             | 2  | 0 | 0 | 0  |
|       | Practical |             |                                             |    |   |   |    |
| 7.    | ES        | AI20305     | Surveying Laboratory                        | 0  | 0 | 2 | 1  |
| 8.    | PC        | AI20306     | Crop Production Practices Laboratory        | 0  | 0 | 2 | 1  |
| 9.    | PC        | AI20307     | Drawing of Farm Structures                  | 0  | 0 | 2 | 1  |
|       |           |             | TOTAL                                       | 17 | 2 | 6 | 20 |

# SEMESTER IV

| S.No. | Category  | Course Code | Course Title                                                 | L  | T | P | C  |
|-------|-----------|-------------|--------------------------------------------------------------|----|---|---|----|
|       | Theory    |             |                                                              |    |   |   | •  |
| 1.    | BS        | MA20403     | Probability and Statistics                                   | 3  | 1 | 0 | 4  |
| 2.    | ES        | AI20401     | Thermal Engineering                                          | 3  | 0 | 0 | 3  |
| 3.    | PC        | AI20402     | Principles and Practices of Horticultural Crop<br>Production | 3  | 0 | 0 | 3  |
| 4.    | PC        | AI20403     | Fluid Mechanics and Hydraulics                               | 3  | 1 | 0 | 4  |
| 5.    | PC        | AI20404     | Hydrology and Groundwater Engineering                        | 3  | 0 | 0 | 3  |
| 6.    | PC        | AI20405     | Soil Science and Engineering                                 | 3  | 0 | 0 | 3  |
|       | Practical |             |                                                              |    |   |   |    |
| 7.    | PC        | AI20406     | Agricultural Engineering Practices Laboratory                | 0  | 0 | 2 | 1  |
| 8.    | PC        | AI20407     | Fluid mechanics and Strength of Material<br>Laboratory       | 0  | 0 | 2 | 1  |
| 9.    | EE        | EN20401     | English Proficiency Course Laboratory                        | 0  | 0 | 2 | 1  |
|       | •         |             | TOTAL                                                        | 18 | 2 | 6 | 23 |

#### **SEMESTER III**

#### MA20301 TRANSFORMS AND BOUNDARY VALUE PROBLEMS

3 1 0 4

#### **COURSE OBJECTIVES**

To enable the students to

- introduce Fourier series analysis which is central to many applications in engineering apart from solving boundary value problems.
- acquaint the student with Fourier transform techniques used in wide variety of situations in which the functions used are not periodic
- formulate Partial Differential Equations and use Mathematical tools for the solution of PDE that model several physical processes
- develop the modeling of one dimensional equation of heat conduction, wave equation and two dimensional Laplace equation.
- develop Z- transform techniques which will perform the same task for discrete time systems as Laplace Transform does for continuous systems, a valuable aid in analysis of continuous time systems

#### UNIT I FOURIER SERIES

12

Dirichlet's conditions - General Fourier series - Odd and even functions - Half range series - Complex form of Fourier Series - Parseval's identity - Harmonic Analysis.

#### UNIT II FOURIER TRANSFORMS

12

Fourier integral theorem (without proof) - Fourier transform pair - Convolution theorem - Parseval's identity Sine and Cosine transforms - Properties - Transforms of simple functions.

## UNIT III PARTIAL DIFFERENTIAL EQUATIONS

12

Formation of partial differential equations - Lagrange's linear equation - Solutions of standard four types of first order partial differential equations - Linear partial differential equations of second and higher order withconstant coefficients.

# UNIT IV APPLICATIONS OF PARTIAL DIFFERENTIAL EQUATIONS

12

Solutions of one -dimensional equation - Steady state's two-dimensional equation of heat conduction.

# UNIT V Z - TRANSFORMS AND DIFFERENCE EQUATIONS

12

Z-transforms - Elementary properties - Inverse Z-transform - Convolution theorem - Formation of difference equations - Solution of difference equations using Z-transform.

TOTAL PERIODS 60

#### **COURSE OUTCOMES**

- derive Fourier series, their possible forms of representations of periodic functions
- identify and formulate a function in frequency domain whenever the function is defined in time domain
- formulate and solve partial differential equations that occur in many engineering applications
- model wave and heat equations, solve certain boundary value problems and use the solution methods in engineering applications.
- demonstrate the use of Z-transform to convert discrete functions into complex frequency domain representation

#### **TEXT BOOKS**

- 1. Veerarajan T., "Transforms and Partial Differential Equations", Tata McGraw Hill Education Pvt. Ltd., New Delhi, Second reprint, 2012.
- 2. Glyn James, "Advanced Modern Engineering Mathematics", 3<sup>rd</sup> Edition, Pearson Education (2007).

# **REFERENCES**

- 1. Larry C. Andrews, Bhimsen K. Shivamoggi, "Integral Transforms for Engineers", SPIE Optical Engineering press, Washington USA (1999).
- 2. Ramana.B.V., "Higher Engineering Mathematics", Tata Mc-GrawHill Publishing Company limited, New Delhi (2010).
- 3. Narayanan S., Manickavasagam Pillai.T.K and Ramanaiah.G "Advanced Mathematics for Engineering Students", Vol. II & III, S.Viswanathan Publishers Pvt Ltd. 1998.
- 4. Erwin Kreyszig., "Advanced Engineering Mathematics" 10<sup>th</sup>Edition, Wiley Publications.

|     |     | *CO         | -PO & | PSO M | atrix Co | orrelatio | n :: Put | if, Stro | ng:3, M | Ioderate | : 2, Weak | : 1, Nil : · | •    |      |  |  |
|-----|-----|-------------|-------|-------|----------|-----------|----------|----------|---------|----------|-----------|--------------|------|------|--|--|
| COs |     |             |       |       |          | Pı        | rogramn  | nes Outo | comes(P | Os)      |           |              |      |      |  |  |
| COS | PO1 | PO2         | PO3   | PO4   | PO5      | PO6       | PO7      | PO8      | PO9     | PO 10    | PO 11     | PO 12        | PSO1 | PSO2 |  |  |
| CO1 | 3   |             |       |       |          |           |          |          |         |          |           |              |      |      |  |  |
| CO2 | 3   | 3 2 1 1 3 2 |       |       |          |           |          |          |         |          |           |              |      |      |  |  |
| CO3 | 3   | 2           | 3     | 2     | -        | -         | -        | -        | -       | -        | -         | 1            | 3    | 2    |  |  |
| CO4 | 3   | 2           | 2     | 2     | -        | ı         | -        | -        | -       | -        | -         | 1            | 3    | 2    |  |  |
| CO5 | 3   | 3           | 2     | 2     | -        | ı         | -        | -        | COLLE   | 1        | -         | 1            | 3    | 2    |  |  |

To enable the students to

- impart knowledge in the fundamental concepts of stress and strain in mechanics of solids.
- estimate the thermal stresses developed in bars and relationship between elastic constants.
- understand the concept of centre of gravity and moment of inertia of mechanical elements.
- analyse the behaviour of beams under the action of various forces.
- study the methods used for determination of deflection in beams, shells, springs and torsion of shafts.

#### UNIT I STRESSES AND STRAINS

12

Simple stresses and strains; Elasticity and plasticity - force deformation curve for various materials - Hooke's Law; Principle of superposition - stresses in bars of different sections - stresses in bars of uniformly tapering sections and in composite bars - stresses in inclined planes - principal stresses and planes.

#### UNIT II THERMAL STRESS AND ELASTIC CONSTANTS

12

Thermal stresses and strains in simple bars and composite bars; Lateral and linear strain - Poisson's ratio; Volumetric strain of a rectangular body subjected to an axial force; Relation between elastic constants and their derivation.

# UNIT III SHEAR FORCE AND BENDING MOMENT

12

Types of loads acting on the beams - different types of beams; Shear force - bending moment - sign conventions - relation between shear force and bending moment; Bending stresses in beams; Shearing stresses in beams.

UNIT IV TORSION 12

Torsion formulation stresses and deformation in circular and hollows shafts - Deflection in shafts fixed at the both ends - Deflection of helical springs.

#### UNIT V DEFLECTION OF BEAMS AND SHELLS

12

Deflection of beams - double order differential equation method - Macaulay's method; Deformation of thin cylindrical and spherical shell.

TOTAL PERIODS 60

# **COURSE OUTCOMES**

- understand the fundamental concepts of stress and strain in mechanics of solids.
- determine the effect of thermal stresses in bars.
- analyse the center of gravity and moment of inertia of any sections.
- determine the shear force, bending moment and stresses in beams.
- Acquire knowledge in deflection of beams, shells, springs and design of shafts.

#### **TEXT BOOKS**

- 1. Bansal, R.K., "Strength of Materials", Laxmi Publications (P) Ltd., 2007
- 2. Rajput, R.K., "Strength of Materials", by S Chand & Co Ltd., 2007
- 3. Jindal U.C., "Strength of Materials", Asian Books Pvt. Ltd., New Delhi, 2007

# **REFERENCES**

- 1. Bhavikatti. S., "Solid Mechanics", Vikas publishing house Pvt. Ltd, New Delhi, 2010.
- 2. Subramanian R., "Strength of Materials", Oxford University Press, Oxford Higher Education Series, 2007.
- 3. Hibbeler, R.C., "Mechanics of Materials", Pearson Education, Low Price Edition, 2007
- 4. Gambhir. M.L., "Fundamentals of Solid Mechanics", PHI Learning Private Limited., NewDelhi, 2009

|     |     | *CO-PO | ) & PS | O Matr | ix Corr | elation | :: Put i | f, Stror | ıg :3, N | Ioderate : | 2, Weak | 1, Nil : | - |   |  |
|-----|-----|--------|--------|--------|---------|---------|----------|----------|----------|------------|---------|----------|---|---|--|
| COs |     |        |        |        |         | Prog    | gramm    | es Outc  | omes(P   | Os)        |         |          |   |   |  |
| COS | PO1 |        |        |        |         |         |          |          |          |            |         |          |   |   |  |
| CO1 | 2   | 3      | 2      | 3      | 1       | -       | -        | -        | -        | -          | -       | -        | 1 | 1 |  |
| CO2 | 2   | 3      | 2      | 3      | 1       | -       | -        | -        | -        | -          | -       | -        | 1 | 1 |  |
| CO3 | 2   | 3      | 2      | 3      | 1       | -       | -        | -        | -        | -          | -       | -        | 3 | 3 |  |
| CO4 | 2   | 3      | 2      | 3      | 1       | -       | -        | -        | -        | -          | -       | -        | 2 | 2 |  |
| CO5 | 2   | 3      | 2      | 3      | 1       | -       | -        | -        | -        | -          | -       | -        | 3 | 3 |  |



To enable the students to

- study various terminologies used in machines.
- understand concept of sliding and rolling friction.
- know the application of different types of cam and follower.
- impart knowledge in gears.
- delineate the concepts of flywheel and balancing.

#### UNIT I MECHANISMS

9

Definitions - Kinematic links - Pairs - Chain - Machines and mechanism - Types and uses - Kinematic inversion of four bar chain and slider crank mechanism; Velocity and acceleration in simple mechanisms; Vector polygon and instantaneous centre methods; Coriolis component of acceleration.

#### UNIT II FRICTION AND APPLICATIONS

9

Sliding and rolling friction - friction in screw threads; Bearing and lubrication; Friction clutches; Belt drives; Friction aspects in brakes.

#### UNIT III MOTION OF CAM AND FOLLOWER

9

Cam and follower - types - application - displacement diagrams - profile layout for uniform velocity - Uniformacceleration and retardation - simple harmonic and cycloid motion.

### UNIT IV GEARS AND GEAR TRAINS

9

Gears - classification - terminology - law of gearing - tooth profile - interference between rack and pinion; Geartrains - simple – compound - reverted epi-cyclic gear trains.

# UNIT V FLYWHEEL AND BALANCING

9

Inertia - turning moment - flywheel - fluctuation of speed and energy; Balancing of rotating masses.

TOTAL PERIODS 45

#### **COURSE OUTCOMES**

At the end of this course, the students will be able to

- make and improve predictions to agricultural machineries.
- apply force that resists the sliding motion of two objects.
- design and operating for inlet and exhaust valve of I C engine.
- utilize the transfer motion and torque between machine components.
- implement ideas of rotating masses and flywheel

#### **TEXT BOOKS**

- 1. Khurmi, R.S. and Gupta, J.K, "Theory of machines", Eurasia Publication House, 1994
- 2. Rattan, S.S, "Theory of Machines", 3rd Edition, Tata McGraw-Hill, 2009

# **REFERENCES**

- 1. Thomas Beven, "Theory of Machines", CBS Publishers and Distributors, New Delhi, 1984.
- 2. Ballaney, P.L, "Theory of machines", Khanna Publishers, New Delhi,1994.
- 3. Dr.R.K.Bansal, "A text book of theory of machines", Laxmi publications (p) Ltd, New Delhi, 1st Edition 2000.
- 4. J.E. Shigley, J.J. Uicker, "Theory of machines and mechanisms", Theory of Machines and Mechanisms, Mc-Graw Hill, 2nd Edition, 1995.
- 5. Robert L Norton, "Design of machinery: An introduction to the synthesis and analysis of mechanisms and machines", New York: McGraw-Hill, 2012.

# CO/PO Mapping

|     | *( | CO-PO | & PSC | ) Matri | x Corre | elation | :: Put | if, Stro | ng :3, N | Aoderat | e : 2, Wo | eak : 1, N | Nil : - |      |
|-----|----|-------|-------|---------|---------|---------|--------|----------|----------|---------|-----------|------------|---------|------|
|     |    |       |       |         |         | Pro     | gramm  | es Outo  | comes(I  | POs)    |           |            |         |      |
| Cos | РО | PO2   | PO3   | PO4     | PO5     | PO6     | PO7    | PO8      | PO9      | PO      | PO        | PO         | PSO1    | PSO2 |
|     | 1  |       |       |         |         |         |        |          |          | 10      | 11        | 12         |         |      |
| CO1 | 2  | 3     | -     | -       | -       | -       | -      | -        | -        | -       | -         | -          | 3       | 2    |
| CO2 | -  | 3     | 2     | -       | -       | -       | -      | -        | -        | -       | -         | 3          | 3       | 2    |
| CO3 | 2  | 3     | -     | -       | -       | 2       | -      | -        | -        | -       | -         | -          | 3       | 2    |
| CO4 | -  | 3     | 2     | -       | -2      | -       | -      | -        | -        | -       | -         | 3          | 3       | 2    |
| CO5 | 2  | -     | -     | -       | -       | -       | -      | -        | -        | -       | -         | -          | 3       | 2    |

Approved
BOARD OF STUDIES
Agriculture Engineering

To enable students to.

**COURSE OBJECTIVES** 

- impart knowledge in the basics of Agriculture principles and practices.
- acquire knowledge in seasonal selection of crops and its establishments.
- introduce about the management of crops in all aspects.
- study the cultivation practices of major field crops.
- get an idea about the production practices of cash crops.

#### **UNIT I** INTRODUCTION TO AGRICULTURE

10

Introduction to agriculture - terms, definitions and branches; Scope and importance of agriculture; Field crops classification based on agronomic, special purpose, life span, root depth and Co<sub>2</sub> fixation; Factors affecting crop growth and production - internal (genetic) and external (Environmental, Edaphic& Biotic); Major crops in India and Tamil Nadu; Crop seasons in India and Tamil Nadu factors influencing choice of crops- regional and seasonal selection.

#### UNIT II PRINCIPLES AND PRACTICES OF CROP PRODUCTION - I 10

Field preparation - land configuration; Tillage - objectives and types - On season tillage - Off season tillage - Special purpose tillage - modern concepts; Seeds and Sowing - Seed selection - Seed treatment - Sowing and planting - Crop geometry; Cropping system - Inter cropping - Cover cropping - Mixed cropping - Relay cropping - Multitier cropping - Crop rotation - Cropping pattern - Cropping intensity.

### UNIT III PRINCIPLES AND PRACTICES OF CROP PRODUCTION - II

Intercultural operations - Gap filling - Thinning - Mulching - Earthing-up - Propping; Water Management - Methods of Irrigation - Crop water requirement - Water use efficiency; Nutrient management - Essential nutrients - Nutrient requirement - Fertilizer application (Types and Methods); Weed management - Cultural - Chemical - Integrated; Pest and Diseases management - Cultural -Chemical - Integrated.

#### PRODUCTION PRACTICES OF AGRICULTURAL CROPS - I UNIT IV 9

Generalized management and cultivation practices for important groups of field crops in Tamil Nadu; cereal crops (Rice, Maize, Sorghum, Bajra and Ragi); Grain legumes (Red gram, Black gram, Green gram, Cowpea Horse gram and Soybean); Green manure crop (Daincha and Sunnhemp); fodder crops (Bajra Napier Hybrid grass and Fodder Sorghum).

#### UNIT V PRODUCTION PRACTICES OF AGRICULTURAL CROPS - II 6

Generalized management and cultivation practices of Oil seed crops (Groundnut, Sunflower, Gingelly and Castor), Sugar crop (Sugarcane) and Fiber crop (Cotton and Jute).

#### **COURSE OUTCOMES**

At the end of this course, the students will be able to

- apply the knowledge of cultivation of crops in different seasons.
- analyze the choice of crops to be selected for different regions and seasons.
- understand the crop management practices of agricultural field crops.
- identify the best cultivation practices to be followed for higher yield of field crops.
- apply the modern technique in cultivation of cash crops.

# **TEXT BOOKS**

- 1. Reddy T. Sankara G.H. YellamandaReddy, "Principles of Agronomy", Kalyani Publishers, New Delhi,1995.
- 2. Rajendra Prasad, "Text Book of Field Crop Production", Directorate of Information and Publication, Krishi Anusandhan Bhavan, Pusa, New Delhi, 2005.
- 3. Handbook of Agriculture. ICAR Publications, New Delhi.

#### REFERENCES

- 1. Balasubramaniyan, P and SP. Palaniappan, "Principles and practices of Agronomy", Agrobios (India), Jodhpur, 2002.
- 2. Crop Production Guide, Tamil Nadu Agricultural University Publication, Coimbatore. 2005
- 3. Chatterjee, B.N. and K.K.Bhattacharyya, "Principles and Practices of Grain legume production", Oxford and IBH Publishing Co. Pvt. Ltd., New Delhi, 1986.
- 4. Chatterjee, B.N. and P.K.Das, "Forage crop production Principles and Practices",Oxford and IBH Publishing Co. Pvt. Ltd., New Delhi,1989.

# **CO/PO Mapping:**

|     | *C0 | O-PO &    | & PSO | Matrix | Corre | elation | :: Put | if, Stro | ong :3, | Modera | te: 2, W | eak: 1, | Nil : - |   |  |
|-----|-----|-----------|-------|--------|-------|---------|--------|----------|---------|--------|----------|---------|---------|---|--|
| Cos |     |           |       |        |       | Pro     | gramn  | nes Out  | tcomes  | (POs)  |          |         |         |   |  |
| Cus | PO1 | 1501 1502 |       |        |       |         |        |          |         |        |          |         |         |   |  |
| CO1 | 2   | 3         | -     | -      | -     | -       | -      | -        | -       | -      | -        | -       | 3       | 2 |  |
| CO2 | -   | 3         | 2     | -      | -     | -       | -      | -        | -       | -      | -        | 3       | 3       | 2 |  |
| CO3 | 2   | 3         | -     | -      | -     | 2       | -      | -        | -       | -      | -        | -       | 3       | 2 |  |
| CO4 | -   | 3         | 2     | -      | -     | 2       | -      | -        | -       | -      | -        | 3       | 3       | 2 |  |
| CO5 | 2   | -         | -     | -      | -     | -       | -      | -        | -       | ١ _    | -        | -       | 3       | 2 |  |

BOARD OF STUDIES
Agriculture Engineering

To enable the students to

- introduce the principles of surveying.
- provide exposure in various methods and applications of surveying.
- understand the advanced level of surveying equipments.
- gain knowledge about the applications of levelling.
- enrich knowledge on modern surveying.

#### UNIT I FUNDAMENTALS AND CHAIN SURVEYING

9

Definition - Classifications - Basic principles; Equipment and accessories for ranging and chaining - Methods of ranging - well conditioned triangles - Errors in linear measurement and their corrections - Obstacles; Traversing - Plotting - applications - enlarging and reducing figures - Areas enclosed by straight lines - Irregular figures.

#### UNIT II COMPASS AND PLANE TABLE SURVEYING

9

Compass - Basic principles - Types - Bearing - Systems and conversions - Sources of errors - Local attraction - Magnetic declination - Dip-Traversing - Plotting - Adjustment of closing error - applications; Plane table and its accessories - Merits and demerits - Radiation - Intersection - Resection - Traversing - sources of errors - applications.

### UNIT III LEVELLING

9

Level line - Horizontal line - Datum - Bench marks - Levels and staves - temporary and permanent adjustments - Methods of levelling - Fly levelling - Check levelling - Procedure in levelling - Booking - Reduction - Curvature and refraction - Reciprocal levelling - sources of errors in levelling - Precise levelling - Types of instruments - Adjustments - Field procedure.

# UNIT IV LEVELLING APPLICATIONS

9

Longitudinal and Cross-section - Plotting - Contouring - Methods - Characteristics and uses of contours - Plotting - Methods of interpolating contours - computation of cross sectional area and volumes Earthwork calculations - Capacity of reservoirs - Mass haul diagrams.

# UNIT V THEODOLITE AND MODERN SURVEYING

9

Theodolite - Types - Description - Horizontal and vertical angles - Temporary and Permanent adjustments - Heights and distances - Tangential and Stadia Tacheometry - Stadia constants - Anallactic lens - Traversing - Gale's table; Total Station - Global Positioning System (GPS).

TOTAL PERIODS 45

#### **COURSE OUTCOMES**

At the end of this course, the students will be able to

- identify and differentiate all type of surveying equipments.
- gain knowledge in the field of compass surveying.
- Practice the different types of levelling in field.
- prepare LS & CS, contour maps and carryout surveying works related to land and civil engineering projects.
- update their knowledge in modern surveying methods

#### **TEXT BOOKS**

- 1. Dr. B. C. Punmia, "Surveying", Volume I &II, Laxmi Publications (P) Ltd., 2005.
- 2. N.N. Basak, "Surveying and Levelling", Tata McGraw-Hill Education Pvt. Ltd., 2004.

#### REFERENCES

- 1. Arora, K.R., "Surveying Vol. I, II & III", Standard Book House. New Delhi.
- 2. Agor, R., "Surveying and Levelling", Khanna Publishers, New Delhi.
- 3 Punmia. B.C Surveying (Vol- I & Vol-II) Laxmi publications, New Delhi. 1991.
- 4. Kanetkar, T.P. & Kulkarni, S.V., Surveying & leveling Part I, A.V.G. Prakashan, Poona 1984.

## CO/PO Mapping:

|     |     | *CO       | -PO & | PSO M | atrix Co | orrelatio | on :: Pu | t if, Str | ong :3, | Moderate | e : 2, Weal | k : 1, Nil : | -    |      |  |  |
|-----|-----|-----------|-------|-------|----------|-----------|----------|-----------|---------|----------|-------------|--------------|------|------|--|--|
| Cos |     |           |       |       |          | P         | rogramı  | nes Out   | comes(  | POs)     |             |              |      |      |  |  |
| Cos | PO1 | PO2       | PO3   | PO4   | PO5      | PO6       | PO7      | PO8       | PO9     | PO 10    | PO 11       | PO 12        | PSO1 | PSO2 |  |  |
| CO1 | 3   | - 1 3 3 2 |       |       |          |           |          |           |         |          |             |              |      |      |  |  |
| CO2 | -   | 3         | 2     | 3     | 3        | -         | -        | 2         | 3       | -        | -           | 2            | -    | 1    |  |  |
| CO3 | -   | -         | -     | -     | 3        | 1         | -        | -         | -       | -        | -           | -            | 1    | 3    |  |  |
| CO4 | 3   | -         | 3     | -     | 1        | 2         | -        | -         | -       | -        | -           | -            | =    | 2    |  |  |
| CO5 | 2   | 1         | 2     | -     | 3        | -         | -        | 1         | -       | -        | -           | 1            | 2    | 2    |  |  |

BOARD OF STUDIES
Agriculture Engineering

AUTONOMO!

To enable students to

- develop the individual multi-dimensionally in physical, intellectual, emotional and spiritual dimensions.
- facilitate individuals think about and reflect on different values.
- understand their responsibility in making choices and the practical implications of expressing them.
- instigate to choose their personal, social, moral and spiritual values.
- design and chisel the overall personality of an individual.

## UNIT I PERSONAL VALUES

6

Value Education – Definition, Types of values; Human values - Respect, Acceptance, Consideration, Appreciation, Listening, Openness, Affection, Patience, Honesty, Forgiveness, Sacrifice, Authenticity, Self Control, Altruism, Tolerance and Understanding, Wisdom, Decision making, Self –actualization, Character formation towards positive Personality, Contentment; Religious Values -Humility, Sympathy and Compassion, Gratitude. Peace, Justice, Freedom, Equality.

#### UNIT II COMMUNAL VALUES

6

Social Values - Pity and probity - Self control - Respect to - Age, Experience, Maturity, Family members, Neighbors- Universal Brotherhood - Flexibility -Peer pressure - Sensitization towards Gender Equality, Physically challenged, Intellectually challenged - Reliability - Unity - Modern Challenges of Adolescent Emotions and behavior - Comparison and Competition- Positive and Negative thoughts- Arrogance, Anger and Selfishness.

#### UNIT III ENGINEERING ETHICS

6

Professional Values -.Knowledge thirst - Sincerity in profession- Regularity, Responsibility, Punctuality and Faith - Perseverance - Courage - Competence - Co-operation- Curbing unethical practices - Integrity, Social Consciousness and Responsibility. Global Values - Computer Ethics — Moral Leadership - Code of Conduct - Corporate Social Responsibility.

## UNIT IV SPIRITUAL VALUES

6

Developing Spirituality - Thinking process, Moralization of Desires - Health benefits- Physical exercises - Mental peace - Meditation - Objectives, Types, Effects on body, mind and soul- Yoga - Objectives, Types, Asanas. Family values -family's structure, function, roles, beliefs, attitudes and ideals, Family Work Ethic, Family Time, Family Traditions.

#### UNIT V HUMAN RIGHTS

6

Classification of Human Rights - Right to Life, Liberty and Dignity- Right to Equality - Right against Exploitation - Cultural and Educational Rights - Physical assault and Sexual harassment - Domestic violence.

TOTAL PERIODS 30

#### **COURSE OUTCOMES**

At the end of this course, the students will be able to

- cultivate the values needed for peaceful living in the existing society.
- comprehend humanistic values to develop peace in the world.
- foster ethics in profession and usage of Technology.
- orient with the importance of value education towards personal, group and spiritual attributes.
- nurture physical, mental, spiritual growth to face the competitive world.

# **TEXT BOOKS**

- 1. Sharma, S.P. Moral and Value Education; Principles and Practices, Kanishka publishers, 2013.
- 2. Little, William, An introduction of Ethics. Allied publisher, Indian Reprint 1955.

#### REFERENCES

1 "Values (Collection of Essays)". Sri Ramakrishna Math. Chennai. 1996.

|     |     |     | /1 indi | cates | strengt | th of c | orrela | tion) 3 | -Stror | ng, 2-M | edium, | 1-Weal | <u> </u> |      |
|-----|-----|-----|---------|-------|---------|---------|--------|---------|--------|---------|--------|--------|----------|------|
|     |     |     |         |       |         | Progr   | amme   | s Outo  | comes  | (POs)   |        |        |          |      |
| Cos | PO1 | PO2 | PO3     | PO4   | PO5     | PO6     | PO7    | PO8     | PO9    | PO10    | PO11   | PO12   | PSO1     | PSO2 |
| CO1 | -   | -   | -       | -     | -       | -       | -      | 2       | 2      | -       | -      | 2      | -        | -    |
| CO2 | -   | -   | -       | 2     | -       | 2       | -      | 1       | 3      | 2       | 1      | 3      | -        | -    |
| CO3 | -   | -   | 3       | 2     | 2       | 3       | 2      | 3       | 3      | 1       | 3      | 3      | -        | -    |
| CO4 | -   | -   | 3       | 1     | -       | 2       | -      | -       | 1      | -       | -      | 3      | -        | -    |
| CO5 | -   | -   | -       | -     | -       | 1       | -      |         | FRIEL  | CHELE   | ,      | 3      | -        | -    |

To enable the students to

- acquire skills in operating various surveying instruments.
   provide exposure in various methods and applications of surveying to agricultural
- engineering projects
- develop skill to operate leveling instruments
- train the student, how to demonstrate the total station and GPS
- study the applications of leveling

# LIST OF EXPERIMENTS

## 1. Chain Surveying

- a. Plotting the outline of the given building Cross staff survey
- b. Determination of the area of closed traverse

#### 2. Compass Surveying

a. Compass traversing Measuring Bearings & arriving included angles

#### 3. Plane Table Surveying

- a. Plane Table Surveying Radiation methods
- b. Plane Table Surveying Intersection methods

# 4. Levelling

- a. Fly levelling height of collimation method
- b. Fly levelling Rise and fall method

# 5. Total Station And GPS

- a. Study of Electric Total Station
- b. Field observation of GPS

TOTAL PERIODS 30

### **COURSE OUTCOMES**

- use all surveying equipment's
- gain knowledge in the principles and classification of chain surveying and ranging
- demonstrate the theodolite ,total station and global position system
- understand the different types of bearing and traversing
- prepare LS AND CS ,contour map and carryout surveying works projects

|     |     |     |     |     |     | Pr  | ogramn | nes Outc | omes(P | Os)   |       |       |      |      |
|-----|-----|-----|-----|-----|-----|-----|--------|----------|--------|-------|-------|-------|------|------|
| COs | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7    | PO8      | PO9    | PO 10 | PO 11 | PO 12 | PSO1 | PSO2 |
| CO1 | 3   | 3   | -   | -   | 3   | 1   | -      | -        | 3      | 2     | 2     | 3     | 3    | 2    |
| CO2 | 3   | 3   | -   | -   | 3   | 1   | -      | -        | 3      | 2     | 2     | 3     | 3    | 2    |
| CO3 | 2   | 1   | -   | -   | 1   | `1  | 1      | -        | 1      | 2     | -     | 1     | 2    | 1    |
| CO4 | 2   | 2   | -   | -   | -   | -   | -      | -        | 1      | -     | -     | -     | -    | 3    |
| CO5 | 2   | 3   | 2   | -   | 3   | 2   | 2      | -        | 3      | -     | -     | 3     | 2    | 1    |



To enable the students to

- gain sufficient knowledge in crop cultivation practices of important crops.
- know the basic principles in field preparation practices of crop cultivation.
- introduce the basic concept of seed selection and its treatment.
- introduce the different crop production practices in wet land, dry land and irrigated upland through hands on experience and demonstrations
- get an idea about weed management, pest management and post harvesting

#### LIST OF EXPERIMENTS

- 1. Field preparation studies
- 2. Identification of grains and crops
- 3. Seed selection and seed treatment procedures
- 4. Seed bed and nursery preparation
- 5. Sowing, transplanting and estimation of germination rate
- 6. Biometric observation for crops
- 7. Nutrient management studies
- 8. Weed management studies
- 9. Integrated Pest Management studies
- 10. Harvesting and yield estimation

TOTAL PERIODS 30

#### **COURSE OUTCOMES**

- know the basic principles in field preparation practices of crop cultivation.
- identify various grains and crops to seeds.
- prepare seed bed for nursery preparation and sowing.
- calculate the germination percentage and nutrient requirement for field crops.
- apply the concept for weed management, pest management and post harvesting.

|     |     | CC | )-PO & | PSO Ma | trix Co | rrelation | :: Put | if, Stron | g:3, M | oderate : | 2, Weak | : 1, Nil : - |      |      |
|-----|-----|----|--------|--------|---------|-----------|--------|-----------|--------|-----------|---------|--------------|------|------|
|     |     |    |        |        |         | Pr        | ogramn | nes Outc  | omes(P | Os)       |         |              |      |      |
| Cos | PO1 | PO | PO3    | PO4    | PO5     | PO6       | PO7    | PO8       | PO9    | PO 10     | PO 11   | PO 12        | PSO1 | PSO2 |
|     |     | 2  |        |        |         |           |        |           |        |           |         |              |      |      |
| CO1 | 3   | -  | -      | -      | -       | -         | -      | -         | -      | -         | -       | 3            | 3    | -    |
| CO2 | 3   | -  | -      | -      | -       | -         | -      | -         | -      | -         | -       | 3            | 3    | -    |
| CO3 | 3   | -  | -      | -      | 2       | -         | -      | -         | -      | -         | -       | 3            | 3    | -    |
| CO4 | 3   | -  | -      | -      | 2       | -         | -      | -         | -      | -         | -       | 3            | 3    | 3    |
| CO5 | 3   | -  | -      |        | -       | -         | 2      | -         | -      | -         | -       | 3            | 3    | -    |



To enable the students to

- plan and draw layout for farm structures
- understand the layouts and design of sanitary and storage structures.
- conceive and design various farm structures related to agricultural engineering
- enhance the knowledge in design of various farm systems.

#### LIST OF EXERCISES

- 1. Planning and Layout of farmstead
- 2. Design of loose housing and stanchion barn(including ventilation system)
- 3. Design of poultry house Deep litter and Cage system(including ventilation system)
- 4. Design of a sheep / goat house and hog house
- 5. Design of silos over ground and underground and hay storages
- 6. Design of farm fencing system and farm trusses
- 7. Design of machinery and equipment shed and workshops
- 8. Design of septic tank and sanitary structures
- 9. Design of rural/farm roads and culverts.
- 10. Design of biogas plant

**TOTAL PERIODS** 30

#### **COURSE OUTCOMES**

- design various form structures related to agricultural engineering
- plan and layout of farmstead
- design machinery and equipment shed and workshops
- design biogas plant

# CO/PO Mapping:

|     | *C | О-РО                  | & PSC | Matri | x Corr | elation | :: Put | t if, Str | ong :3, | Moderat | e: 2, W | eak : 1, N | Nil : - |      |  |
|-----|----|-----------------------|-------|-------|--------|---------|--------|-----------|---------|---------|---------|------------|---------|------|--|
|     |    |                       |       |       |        | Pro     | ogramr | nes Ou    | tcomes  | (POs)   |         |            |         |      |  |
| COs | PO | PO                    | PO    | PO    | PO     | PO      | PO     | PO        | PO      | PO 10   | PO      | PO         | PSO1    | PSO2 |  |
|     | 1  | 2 3 4 5 6 7 8 9 11 12 |       |       |        |         |        |           |         |         |         |            |         |      |  |
| CO1 | 1  | - 2 1 2 - 2 -         |       |       |        |         |        |           |         |         |         |            |         |      |  |
| CO2 | 2  | 2                     | 3     | 1     | -      | -       | -      | -         | -       | =       | 2       | 1          | 1       | 2    |  |
| CO3 | 2  | 1                     | 2     | 1     | 1      | -       | 2      | -         | -       | -       | 1       | 1          | 1       | 1    |  |
| CO4 | 2  | 1                     | 2     | 3     | 1      | -       | 2      | - CR      | ING CO  | LLEC    | -       | -          | -       | 2    |  |

Approved
BOARD OF STUDIES
Agriculture Engineering

AUTONOMOU!

#### **SEMESTER IV**

#### **MA20403**

#### PROBABILITY AND STATISTICS

3 1 0 4

#### **COURSE OBJECTIVES**

To enable the students to

- analyse the concept of Random variables and probability distribution in designing processes.
- know and differentiate the discrete and continuous two dimensional random variables...
- determine the concepts of hypotheses testing, its need and applications.
- equip with statistical techniques for designing experiments, analyzing, interpreting and presentingresearch data.
- emphasize the aspects of statistical tools in engineering problems.

#### UNIT I RANDOM VARIABLES

12

Discrete and continuous random variables - Moments - Moment generating functions - Binomial, Poisson, Geometric, Uniform Exponential, Gamma and Normal distributions - Functions of random variables.

#### UNIT II TWO - DIMENSIONAL RANDOM VARIABLES

12

Joint distributions - Marginal and conditional distributions - Covariance - Correlation and Linear regression - Transformation of random variables - Applications of Central limit theorem (for independent and identically distributed random variables).

#### UNIT III TESTING OF HYPOTHESIS

**12** 

Sampling distributions - Estimation of parameters - Statistical hypothesis - Large sample test based on Normal distribution for single mean and difference of means -Tests based on t, Chi- square and F distributions for mean, variance and proportion - Contingency table (test for independent) - Goodness of fit.

#### UNIT IV DESIGN OF EXPERIMENTS

12

ANOVA - One way and Two way classifications - Completely randomized design - Randomized block design - Latin square design - 22 factorial design.

# UNIT V STATISTICAL QUALITY CONTROL

12

Control charts for measurements (X and R charts) - Control charts for attributes (p, c and np charts) - Tolerance limits - Acceptance sampling.

#### TOTAL PERIODS 60

# **COURSE OUTCOMES**

- demonstrate the fundamental concepts of probability and probability distributions of random variables in designing process
- identify the differences in two dimensional random variables.
- implement the statistical techniques to hypotheses testing of engineering and management problems
- be aware of the principles to be adopted for designing the experiments.
- compare statistical date using control chart in quality control.

#### **TEXT BOOKS**

- 1. Milton. J. S. and Arnold. J.C., "Introduction to Probability and Statistics", Tata McGraw Hill, 4<sup>th</sup> Edition, 2007
- 2. Johnson. R.A. and Gupta. C.B., "Miller and Freund"s Probability and Statistics for Engineers", Pearson Education, Asia, 7<sup>th</sup> Edition, 2007.
- 3. Papoulis. A and Unni Krishna pillai. S., "Probability, Random Variables and Stochastic Processes" McGraw Hill Education India, 4<sup>th</sup> Edition, New Delhi, 2010.

## **REFERENCES**

- Devore. J.L., "Probability and Statistics for Engineering and the Sciences", Cengage Learning, New Delhi, 8<sup>th</sup> Edition, 2012.
- 2. Walpole. R.E., Myers. R.H., Myers. S.L. and Ye. K., "Probability and Statistics for Engineers and Scientists", Pearson Education, Asia, 8<sup>th</sup> Edition, 2007.
- 3. Ross, S.M., "Introduction to Probability and Statistics for Engineers and Scientists", 3<sup>rd</sup> Edition, Elsevier,2004.
- 4. Spiegel. M.R., Schiller. J. and Srinivasan. R.A., "Schaum"s Outline of Theory and Problems of Probability and Statistics", Tata McGraw Hill Edition, 2004.

|     |    | *CO-I | PO & PS | SO Mat | rix Corı | relation | :: Put i | if, Stron | ıg:3, M | loderate | : 2, Weak | : 1, Nil : | -    |      |
|-----|----|-------|---------|--------|----------|----------|----------|-----------|---------|----------|-----------|------------|------|------|
|     |    |       |         |        |          | Pro      | gramm    | es Outc   | omes(P  | Os)      |           |            |      |      |
| COs | PO | PO2   | PO3     | PO4    | PO5      | PO6      | PO7      | PO8       | PO9     | PO 10    | PO 11     | PO 12      | PSO1 | PSO2 |
|     | 1  |       |         |        |          |          |          |           |         |          |           |            |      |      |
| CO1 | 3  | 3     | 3       | 3      | -        | -        | -        | -         | -       | -        | -         | 3          | 3    | 3    |
| CO2 | 3  | 2     | 3       | 3      | -        | -        | -        | -         | -       | -        | -         | 2          | 3    | 3    |
| CO3 | 3  | 3     | 3       | 2      | -        | -        | -        | -         | -       | -        | -         | 3          | 3    | 3    |
| CO4 | 3  | 3     | 3       | 2      | -        | -        | -        | -         |         | -        | -         | 2          | 3    | 3    |
| CO5 | 3  | 3     | 3       | 3      | -        | -        | -        | -         | -       | -        | -         | 3          | 3    | 3    |

To enable the students to

- understand the fundamental concepts and first law of thermodynamics
- know the second law and its application.
- study the principle of operation of IC engines and boilers.
- impart knowledge in the properties of mixture of gases.
- introduce modes of heat transfer.

(Use of standard and approved steam table, Mollier chart and Heat and Mass Transfer data book permitted)

#### UNIT I BASIC CONCEPTS AND FIRST LAW

Q

Thermodynamics and Energy; Comparison of microscopic and macroscopic approach; Intensive and extensive properties, systems and their types; Thermodynamic process and cycles, simple problems on processes; Concept of Temperature and heat - Zeroth law of thermodynamics, First law of Thermodynamics, steady flow processes, solving problems on the applications of Thermodynamics.

#### UNIT II SECOND LAW OF THERMODYNAMICS

9

Heat reservoir - Source, sink - Heat engine, Refrigerator, heat pump; statements of second law and its corollaries; Carnot Cycle, Reversed Carnot cycle, efficiency, COP; Introduction to Pure substances - Formation of steam and its thermodynamic properties.

#### UNIT III INTERNAL COMBUSTION ENGINES

9

Introduction to IC engines - C.I and S.I Engines, Four stroke and two stroke engines; Simple carburetor and MPFI; Diesel pump and injector system; Lubrication and cooling system; Battery and Magneto ignition system.

#### UNIT IV IDEAL AND REAL GASES AND GAS MIXTURES

9

Properties of Ideal gas - Ideal and Real gas comparison; Vander Waals equation - Dalton law - Gibbs law - compressibility chart; Properties of mixture of gases; Simple problems on Gas mixtures.

### UNIT V HEAT TRANSFER

9

Conduction - Plane wall, hollow cylinder, Composite walls - Fins; Convection - Forced convection and Free convection - Flow over flat plate and flow through pipes; Introduction to Radiation.

TOTAL PERIODS 45

# **COURSE OUTCOMES**

- gain knowledge on thermodynamic principles and first law.
- acquire knowledge on thermodynamic second law and its applications.
- understand the working principle of IC engines.
- know the properties of gases and vapour mixtures.
- differentiate three modes of heat transfer.

# **TEXT BOOKS**

- 1. Nag.P.K., "Engineering Thermodynamics", Third Edition, Tata McGraw hill, 2005.
- 2. R.K.Rajput, "Thermal Engineering", Laxmi publication (p) Ltd., New Delhi, 2010.

# REFERENCES

- 1. Yunus. A.Cengel, M.Boles, "Thermodynamics An Engineering Approach", Tata McGraw Hill, 2010.
- 2. Ganesan.V, "Internal Combustion Engines", Tata McGraw Hill, 2007
- 3. Domkundwar. S, C.P.Kothandaraman, "A course in Thermal Engineering", Dhanpat Rai & Co (P) Ltd,2000.
- 4. Natarajan. E, "Engineering Thermodynamics: Fundamental and Application", Anuragam publications, 2012.
- 5. Rudramoorthy. R, "Thermal Engineering", Tata McGraw Hill New Delhi, 2003.

# CO/PO Mapping:

|     | *CO-PO & PSO Matrix Correlation :: Put if, Strong :3, Moderate : 2, Weak : 1, Nil : - |                       |     |     |     |     |       |         |        |       |       |       |      |      |  |
|-----|---------------------------------------------------------------------------------------|-----------------------|-----|-----|-----|-----|-------|---------|--------|-------|-------|-------|------|------|--|
| ~ ~ |                                                                                       |                       |     |     |     | Pro | gramm | es Outo | omes(P | Os)   |       |       |      |      |  |
| COs | PO<br>1                                                                               | PO2                   | PO3 | PO4 | PO5 | PO6 | PO7   | PO8     | PO9    | PO 10 | PO 11 | PO 12 | PSO1 | PSO2 |  |
| CO1 | 2                                                                                     | 3                     | 2   | 3   | 1   | -   | -     | -       | -      | -     | -     | -     | 1    | 1    |  |
| CO2 | 2                                                                                     | 3                     | 2   | 3   | 1   | -   | -     | -       | -      | -     | -     | -     | 1    | 1    |  |
| CO3 | 2                                                                                     | 3                     | 2   | 3   | 1   | 1   | -     | -       | -      | -     | 1     | 1     | 3    | 3    |  |
| CO4 | 2                                                                                     | 3                     | 2   | 3   | 1   | 1   | -     | -       | -      | -     | 1     | 1     | 2    | 2    |  |
| CO5 | 2                                                                                     | 2 3 2 3 1 1 - 1 1 3 3 |     |     |     |     |       |         |        |       |       |       |      |      |  |
|     |                                                                                       | BOARD OF STUDIES      |     |     |     |     |       |         |        |       |       |       |      |      |  |

Agriculture Engineering

To enable the students to

- impart basic knowledge of Horticulture crop production.
- study the production practices of Horticulture crops.
- understand the cultivation practices of fruits and plantation crops.
- acquire knowledge in production practices of vegetable crops.
- introduce the production practices of flowers and medicinal plants.

# UNIT I INTRODUCTION AND PROPAGATION OF HORTICULTURE CROPS 9

Horticulture crops - Scope and importance - Area and production - Exports and imports - fruit zones of India - Factors limiting production; Propagation - Methods (seed, vegetative method and tissue culture) - advantages and disadvantages - Propagation techniques - specialized plant parts for propagation; structures and tools used in propagation.

#### UNIT II PRCATICES IN HORTICULTURE CROPS

12

System of planting in orchards (Square, Rectangular, Hexagonal, Quincunx, Contour and Triangular); Training and pruning methods - usefulness; Protected cultivation - Precision farming - controlled environment cultivation - usefulness; Pollination and fruit set - factors influencing - improvement techniques; Fruit drops - Causes and management; Growth regulators - Types - Role in horticulture crops; Landscaping - Scope and Importance - Components of Landscaping.

# UNIT III PRODUCTION PRACTICES OF FRUITS, SPICES AND PLANTATION CROPS 10

Generalized management and cultivation practices for important crops in Tamil Nadu - Fruit crops: Mango, Banana, Grapes, Acid lime, Papaya, Sapota and Guava; Spice crops: Pepper, Cardamom, Turmeric, Ginger and Coriander; Plantation crops: Coffee, Tea, Coconut and Arecanut.

## UNIT IV PRODUCTION PRACTICES OF VEGETABLES

8

Generalized management and cultivation practices for important vegetable Crops: Tomato, Chillies, Capsicum, Brinjal, Bhendi, Onion, Gourds, Cassava, Carrot, Radish, Beetroot, Cabbage, Cauliflower, Amaranthus and Moringa.

#### UNIT V PRODUCTION PRACTICES OF FLOWERS AND MEDICINAL PLANTS 6

Generalized management and cultivation practices for commercial flower crops: Jasmine, Rose, marigold, Chrysanthemum; Cut flower production in rose; Commercial medicinal plants production technology: Gloriosa, Senna and Coleus.

TOTAL PERIODS 45

#### **COURSE OUTCOMES**

At the end of this course, the students will be able to

- acquire knowledge in factors affecting growth and production of horticultural crops.
- understand the horticultural crop management practices.
- analyze the choice of practices to be followed for better growth of fruits, spices and plantation crops
- identify the best practices to be followed for higher yield of vegetable crops.
- apply advanced technology of flowers and medicinal crop production..

# **TEXTBOOKS**

- 1. Kumar, N., "Introduction to Horticulture", Rajalakshmi Publications. Nagercoil, 1993.
- 2. Edmond, J.B.Musser, A.M. and Andrews, F.S. "Fundamentals of Horticulture", McGraw Hill Book Co., New York, 1957.
- 3. Shanmugavelu, K.G, "Production Technology of Vegetable Crops", Oxford India Publication, N.D,1989.
- 4. Chattopadyay, T.K, "A Text Book on Pomology (Vol.1-4)", Kalyani publishers, New Delhi, 1998.

#### REFERENCES

- 1. "Horticultural Crop Production Guide", Tamil Nadu Agricultural University Publication, Coimbatore.2005.
- 2. Kumar, N., Abdul Khader, M. Rangaswami, P. and Irulappan, I, "Introduction to spices, plantation crops, medicinal and aromatic plants", Rajalakshmi Publications, Nagercoil. 1993.
- 3. Shanmugavel, K.G, "Production Technology of Vegetable Crops",Oxford India Publications, New Delhi. 1989.
- 4. Bose T. K. and L.P. Yadav, "Commercial Flowers", Nayaprakash, Calcutta. 1989.
- 5. Handbook of Agriculture. ICAR Publications, New Delhi.

|     | *CO-PO & PSO Matrix Correlation :: Put if, Strong :3, Moderate : 2, Weak : 1, Nil : - |                          |     |     |     |     |      |                    |                             |               |          |          |      |      |  |  |
|-----|---------------------------------------------------------------------------------------|--------------------------|-----|-----|-----|-----|------|--------------------|-----------------------------|---------------|----------|----------|------|------|--|--|
| G0  |                                                                                       | Programmes Outcomes(POs) |     |     |     |     |      |                    |                             |               |          |          |      |      |  |  |
| COs | PO<br>1                                                                               | PO2                      | PO3 | PO4 | PO5 | PO6 | PO7  | PO8                | PO9                         | PO<br>10      | PO<br>11 | PO<br>12 | PSO1 | PSO2 |  |  |
| CO1 | 2                                                                                     | 3                        | -   | -   | -   | -   | -    | -                  | -                           | -             | -        | -        | 3    | 2    |  |  |
| CO2 | 2                                                                                     | 3                        | -   | -   | -   | -   | -    | -                  | -                           | -             | -        | -        | 3    | 2    |  |  |
| CO3 | -                                                                                     | 3                        | 2   | -   | -   | 2   | 3    | -                  | -                           | -             | -        | 3        | 3    | 2    |  |  |
| CO4 | -                                                                                     | 3                        | 2   | -   | -   | -   | 2    | WEEKA              | G COLLEG                    | $\mathcal{E}$ | -        | 3        | 3    | 2    |  |  |
| CO5 | 2                                                                                     | -                        | -   | -   | -   | -   | - (4 | BOAR!<br>Aijricult | OF STUDIES<br>ore Engineeri | ng P          | -        | -        | 3    | 2    |  |  |

To enable the students to

- introduce the basic properties and behaviour of fluids.
- impart an idea of fluid statics and kinematics.
- estimate the rate of flow through various elements.
- analyse the flow through open channels.
- study the working principle of different types of pumps.

#### UNIT I FLUID PROPERTIES

12

Properties of fluids - definition - units of measurement - Mass density - specific weight - specific volume - specific gravity - viscosity - compressibility and bulk modulus of elasticity - surface tension - capillarity - vapour pressure.

## UNIT II FLUID STATICS AND KINEMATICS

12

Fluid statics - Fluid pressure - Pascal's law - kinds of pressure - pressure variation in fluid - measurement of pressure - manometer and mechanical gauges; Hydrostatic forces on surfaces - total pressure and centre of pressure - buoyancy - meta centre - meta centric height; Fluid kinematics - types of fluid flow - rate of flow - velocity and acceleration - velocity potential function - stream function - stream line - equi-potential line - flownet

#### UNIT III FLOW MEASUREMENT

12

Equation of motion - Bernoulli's equation - applications — Venturimeter - orifice meter - Pitot tube - Orifice - flow through orifice - time of emptying a tank with and without inflow; Flow through pipes - loss of energy in pipes - major and minor losses in pipes.

## UNIT IV OPEN CHANNEL FLOW

12

Flow in open channels - classification - most economical section of channel - rectangular - trapezoidal - specific energy and critical depth - critical flow; Flow measurement in small channels - notches and weirs - rectangular - triangular - trapezoidal; Flow measurement in rivers, streams & canals - current meter - float method.

UNIT V PUMPS 12

Pumps - types; Centrifugal pump - components - working principle - Priming - cavitation; Reciprocating pump - components - working principle - types; Other pumps - submersible pump - Jet pump - Air lift pump - Hydraulic ram.

#### TOTAL PERIODS 60

# **COURSE OUTCOMES**

- attain sufficient knowledge about properties and behaviour of fluids.
- analyse the static and kinematic behaviour of fluids.
- measure the discharge and loss of energy in flow through pipes.
- estimate the flow through open channels.
- understand the different types of pumps and its working principle

#### **TEXT BOOKS**

- 1. Bansal, R.K., "A Text book of Fluid Mechanics and Hydraulic Machinery", Laxmi Publications (P) Ltd., New Delhi, 2002.
- 2. Subramanya K., "Flow in Open Channels", Tata McGraw-Hill Publishing Company 2010.

# **REFERENCES**

- 1. Garde, R.J., "Fluid mechanics through problems". New Age International Publishers (P) Ltd., New Delhi, 2002.
- 2. Michael A.M. and S.D.Khepar, "Water Well and Pump Engineering", Tata McGraw Hill Co. New Delhi,2005.
- 3. Michael A.M, "Irrigation Theory and Practice", Vikas Publishing House, New Delhi, 2008.
- 4. Jagdish., Hydraulic Machines. Metropolitan Book House, New Delhi, 2000.

# CO/PO Mapping

|     |         | *CO-I                    | PO & P | SO Mat | rix Cor | relation | :: Put i | if, Stron | ıg:3, M | loderate | : 2, Weak | : 1, Nil : | -    |      |  |  |
|-----|---------|--------------------------|--------|--------|---------|----------|----------|-----------|---------|----------|-----------|------------|------|------|--|--|
| ~~  |         | Programmes Outcomes(POs) |        |        |         |          |          |           |         |          |           |            |      |      |  |  |
| COs | PO<br>1 | PO2                      | PO3    | PO4    | PO5     | PO6      | PO7      | PO8       | PO9     | PO 10    | PO 11     | PO 12      | PSO1 | PSO2 |  |  |
| CO1 | 2       | 3                        | 2      | 3      | 1       | -        | -        | -         | -       | -        | -         | -          | 1    | 1    |  |  |
| CO2 | 2       | 3                        | 2      | 3      | 1       | -        | -        | -         | -       | -        | -         | -          | 1    | 1    |  |  |
| CO3 | 2       | 3                        | 2      | 3      | 1       | 1        | -        | -         | -       | -        | 1         | 1          | 3    | 3    |  |  |
| CO4 | 2       | 3                        | 2      | 3      | 1       | 1        | -        | -         | -       | -        | 1         | 1          | 2    | 2    |  |  |
| CO5 | 2       | 3                        | 2      | 3      | 1       | 1        | -        | -01       | G COLI  | u ·      | 1         | 1          | 3    | 3    |  |  |

Agriculture Engineering

Approved
BOARD OF STUDIES

AUTONOMOUS

To enable the students to

- introduce the concept of hydrological aspects of water availability and requirements.
- give idea about runoff and it measurement.
- study the properties of aquifers.
- impart knowledge on hydraulics related to wells.
- know about modern well drilling methods.

#### UNIT I PRECIPITATION AND EVAPORATION

10

Hydrological cycle - Meteorological measurements - Requirements, types and forms of precipitation - intensity - duration - frequency; Rain gauges - Spatial analysis of rainfall data using Thiessen and Isohyetal methods; Interception - Evaporation - evaporation measurements - pan evaporimeter - evaporation suppression; Infiltration - double ring infiltrometer - infiltration indices - infiltration equation (Horton's).

UNIT II RUNOFF 8

Watershed - catchment and basin - Catchment characteristics; Runoff - factors affecting runoff - Run off estimation using rational and empirical methods - Strange's table - CN&SCS methods; Stage discharge relationships - flow measurements - Hydrograph - Unit Hydrograph - IUH

# UNIT III HYDRO-GEOLOGIC PARAMETERS AND INVESTIGATION 9

Groundwater - scope & importance - development in India - occurrence of groundwater - distribution; Water bearing properties of Rocks - Types of aquifer - confined - unconfined - perched - artesian - aquifuge - aquitard - aquiclude - Movement of groundwater; Geophysical investigation of groundwater - surface methods - Subsurface methods - aquifer mapping - uses - Water Balance.

## UNIT IV HYDRAULICS OF WELLS

10

Wells - classification - advantages of open well and bore wells - Hydraulics of wells - static water levels - piezometric level; Aquifer characteristics; Pumping tests - selection of well sites; Steady state radial flow - Dupit's equation - Theim's equation - Partially penetrating wells - interference of wells; Unsteady state flow - Theis method - Jacob's method; Recuperation test; Hydraulics of open wells - well losses; Introduction to groundwater models.

#### UNIT V WELL DRILLING METHODS

8

Construction - dug well - tube wells - sunk wells - well logging - Types of well screen - Design of well screen - Casing - Curb; Well development - yield testing - Sanitary protection; Well drilling Techniques for different formations - rock blasting units - hand boring - Percussion drilling & tools; Pneumatic drilling - down the hole hammer - drill bits - Wagon drills - Jack hammer; Rotary drilling; Yield increase - Augmentation & Recharging techniques.

# **COURSE OUTCOMES**

At the end of this course, the students will be able to

- understand the various parameters in meteorological measurements.
- obtain knowledge on runoff measurement methods..
- understand various geological parameters and groundwater investigation techniques
- analyze various types wells.
- Suggest drilling methods and Recharging techniques.

#### **TEXT BOOKS**

- 1. Subramanya .K. "Engineering Hydrology"- Tata McGraw Hill, 2010.
- 2. Jayarami Reddy .P. "Hydrology", Tata McGraw Hill, 2008.

# **REFERENCES**

- 1. David Keith Todd. "Groundwater Hydrology", John Wiley & Sons, Inc. 2007
- 2. VenTe Chow, Maidment, D.R. and Mays, L.W. "Applied Hydrology", McGraw Hill International Book Company, 1998.
- 3. Linsley, R.K. and Franzini, J.B. "Water Resources Engineering", McGraw Hill International Book Company, 1995.
- 4. Raghunath .H.M., "Hydrology", Wiley Eastern Ltd., 1998.

## **CO/PO Mapping:**

|     |     | *CO-                                                                                      | PO & P | SO Ma | trix Coi | rrelatio | n :: Put | if, Stro | ng :3, I | Moderate | : 2, Weal | s: 1, Nil: | - |   |  |  |
|-----|-----|-------------------------------------------------------------------------------------------|--------|-------|----------|----------|----------|----------|----------|----------|-----------|------------|---|---|--|--|
| COs |     | Programmes Outcomes(POs)                                                                  |        |       |          |          |          |          |          |          |           |            |   |   |  |  |
|     | PO1 | PO1   PO2   PO3   PO4   PO5   PO6   PO7   PO8   PO9   PO 10   PO 11   PO 12   PSO1   PSO2 |        |       |          |          |          |          |          |          |           |            |   |   |  |  |
| CO1 | 2   | 3                                                                                         | 1      | 3     | 2        | -        | 2        | -        | 2        | 2        | 1         | -          | 3 | 2 |  |  |
| CO2 | 2   | 3                                                                                         | 3      | 2     | 2        | 1        | 2        | 1        | 2        | 3        | 2         | 2          | 2 | 3 |  |  |
| CO3 | 2   | 2                                                                                         | 3      | 2     | 3        | 1        | 3        | 1        | 3        | 3        | 2         | 2          | 2 | 3 |  |  |
| CO4 | 3   | 2                                                                                         | 3      | 3     | 2        | 2        | 3        | 1        | 2        | 2        | 3         | 1          | 2 | 2 |  |  |
| CO5 | 2   | 2                                                                                         | 2      | 3     | 3        | 2        | 2        | -        | 2        | 2        | 3         | 1          | 2 | 3 |  |  |

Approved
BOARD OF STUDIES
Agriculture Engineering

To enable the students to

- introduce the fundamental knowledge of soil physical and chemical properties.
- impart knowledge in types and methods of soil survey and interpretative groupings
- understand the phase relationship and laboratory soil compaction methods
- gain fundamental knowledge in engineering properties of different types of soil.
- study bearing capacity of different types of soil.

#### UNIT I INTRODUCTION, SOIL PHYSICAL AND CHEMICAL PROPERTIES 9

Soil - definition - major components - soil forming minerals and processes - soil profile; Physical properties - texture - density - porosity - consistency - colour - specific gravity - capillary and non-capillary - plasticity - Soil air - soil temperature - soil water & its classification - Movement of soil water; Soil colloids - organic and inorganic matter - Ion exchange - pH - Plant nutrient availability.

#### UNIT II SOIL CLASSIFICATION AND SURVEY

9

Soil taxonomy – Soils of Tamil Nadu and India. Soil survey - types and methods of soil survey – Field mapping- mapping units - base maps -preparation of survey reports - concepts and uses - land capability classes and subclasses - soil suitability -Problem soils – Reclamation.

# UNIT III PHASE RELATIONSHIP AND SOIL COMPACTION

9

Phase relations- Gradation analysis- Atterberg Limits and Indices- Engineering Classification of soil – Soil compaction- factors affecting compaction- field and laboratory methods.

#### UNIT IV ENGINEERING PROPERTIES OF SOIL

9

Shear strength of cohesive and cohesion-less - Mohr-Coulomb failure theory- Measurement of shear strength, direct shear, Tri-axial and vane shear test--Permeability-Coefficient of Permeability-Darcy's law-field and lab methods - Assessment of seepage - Compressibility.

# UNIT V BEARING CAPACITY AND SLOPE STABILITY

9

Bearing capacity of soils - Factors affecting Bearing Capacity- Shallow foundations-Terzaghi's formula- BIS standards - Slope stability - Analysis of infinite and finite slopes- friction circle method slope protection measures.

TOTAL PERIODS 45

#### **COURSE OUTCOMES**

At the end of this course, the students will be able to

- gain ideas in fundamental of soil physical parameters and classification of soils.
- acquire knowledge in the procedures involved in soil survey, field soil mapping and suitability of soil.
- understand the soil compaction and engineering classification of soil.
- analyse engineering properties of soil and darcy law.
- apply the concepts of bearing capacity, slope stability and BIS standard for soil

#### **TEXT BOOKS**

- Nyle C. Brady, "The Nature and Properties of Soil", Macmillan Publishing Company, 10th Edition, New York, 2008.
- 2. Punmia, B.C., "Soil Mechanics and Foundation", Laxmi Publishers, New Delhi, 2007.

#### REFERENCES

- 1. Edward J. Plaster., "Soil Science", Cengage Learning India Ltd, New Delhi, 2009.
- Arora, K.R. "Soil Mechanics and Foundation Engineering", Standard Publishers and Distributors, New Delhi, 2007
- 3. Roland NuhuIssaka, "Soil Fertility", InTech publications, 2012.
- 4. Murthy, V.N.S. "Soil Mechanics and Foundation Engineering", UBS Publishers and Distributors, New Delhi, 2007.
- 5. Sehgal, S.B., "Text Book of Soil Mechanics", CBS Publishers and Distributors New Delhi,007.

# CO/PO Mapping:

|     | *CO-PO & PSO Matrix Correlation :: Put if, Strong :3, Moderate : 2, Weak : 1, Nil : - |     |     |     |     |     |       |         |        |       |       |       |      |      |
|-----|---------------------------------------------------------------------------------------|-----|-----|-----|-----|-----|-------|---------|--------|-------|-------|-------|------|------|
| G0  |                                                                                       |     |     |     |     | Pro | gramm | es Outc | omes(P | Os)   |       |       |      |      |
| COs | PO<br>1                                                                               | PO2 | PO3 | PO4 | PO5 | PO6 | PO7   | PO8     | PO9    | PO 10 | PO 11 | PO 12 | PSO1 | PSO2 |
| CO1 | 2                                                                                     | 3   | 2   | 3   | 1   | -   | -     | -       | -      | -     | -     | -     | 1    | 1    |
| CO2 | 2                                                                                     | 3   | 2   | 3   | 1   | -   | -     | -       | -      | -     | -     | -     | 1    | 1    |
| CO3 | 2                                                                                     | 3   | 2   | 3   | 1   | 1   | -     | -       | -      | -     | 1     | 1     | 3    | 3    |
| CO4 | 2                                                                                     | 3   | 2   | 3   | 1   | 1   | -     | -       | -      | -     | 1     | 1     | 2    | 2    |
| CO5 | 2                                                                                     | 3   | 2   | 3   | 1   | 1   | -     | -       | e con  | -     | 1     | 1     | 3    | 3    |

BOARD OF STUDIES
Agriculture Engineering

#### AI20406

# AGRICULTURAL ENGINEERING PRACTICES

### 0 0 2 1

#### LABORATORY

#### **COURSE OBJECTIVES**

To enable the students to

- learn agro-meteorological measurements influencing crop production.
- estimate germination rate of food crops.
- study the soil and water parameter measurements.
- demonstrate farm machinery and implements.
- practice on agro-energy equipments.

#### LIST OF EXPERIMENTS

#### 1. AGROMETEOROLOGY

- 1. Meteorology Precipitation Rain gauges recording and non-recording rain gauges.
- 2. Measurement of humidity, wind direction and speed.
- 3. Measurement of sunshine and solar radiation.
- 4. Measurement of evaporation (open pan evaporimeter) and study of Automatic Weather Station (AWS).

#### 2. SOIL AND WATER PARAMETERS

- 1. pH and EC measurement using electrode device.
- 2. Soil moisture estimation by different methods.
- 3. Water management and irrigation scheduling

#### 3. AGRICULTURAL MACHINERY

- 1. Demonstration of farm implements and machineries.
- 2. Demonstration of processing equipments
- 3. Demonstration of Agro-energy equipments.

TOTAL PERIODS 30

#### **COURSE OUTCOMES**

- learn agro-meteorological measurements influencing crop production.
- identify different food crops and estimate germination rates
- measure the soil and water parameters.
- gain knowledge in operation of farm machinery and implements.
- understand the use and working principle of agro-energy equipments.

# CO/PO Mapping:

|     | *CO-PO & PSO Matrix Correlation :: Put if, Strong :3, Moderate : 2, Weak : 1, Nil : - |                          |    |    |    |    |    |    |    |    |    |    |     |     |
|-----|---------------------------------------------------------------------------------------|--------------------------|----|----|----|----|----|----|----|----|----|----|-----|-----|
|     |                                                                                       | Programmes Outcomes(POs) |    |    |    |    |    |    |    |    |    |    |     |     |
| COs | PO                                                                                    | PO                       | PO | PO | PO | PO | PO | PO | PO | PO | PO | PO | PSO | PSO |
|     | 1                                                                                     | 2                        | 3  | 4  | 5  | 6  | 7  | 8  | 9  | 10 | 11 | 12 | 1   | 2   |
| CO1 | 3                                                                                     | -                        | -  | -  | -  | -  | -  | -  | -  | -  | -  | 2  | 3   | -   |
| CO2 | 3                                                                                     | 2                        | -  | -  | -  | -  | -  | -  | -  | -  | -  | 2  | 3   | -   |
| CO3 | 3                                                                                     | 2                        | -  | -  | 2  | 2  | -  | -  | -  | -  | -  | 3  | 3   | 3   |
| CO4 | 3                                                                                     | -                        | -  | -  | 2  | -  | -  | -  | -  | -  | -  | 3  | 3   | -   |
| CO5 | 3                                                                                     | -                        | -  | -  | 2  | -  | -  | -  | -  | -  | -  | 2  | 3   | -   |

Approved
BOARD OF STUDIES
Agriculture Engineering

UTONOMOL

# AI20407 FLUID MECHANICS AND STRENGTH OF MATERIAL 0 0 2 1 LABORATORY

#### **COURSE OBJECTIVES**

To enable the students to

- verify the various principles of fluid flow by performing the experiments in lab.
- determine the major and minor losses of fluid flow through pipes.
- understand the working principles of various pumps by doing performance test.
- expose the testing of different materials under the action of various forces
- determine the properties of various materials experimentally.

# FLUID MECHANICS LABORATORY

#### LIST OF EXPERIMENTS

#### A. Flow Measurement

- 1. Flow through Venturimeter
- 2. Flow through Orifice meter
- 3. Flow through Rectangular Notch
- 4. Verification of Bernoulli's Theorem

# **B.** Losses in Pipes

- 1. Determination of friction coefficient in pipes
- 2. Determination of losses due to bends, fittings and elbows

#### C. Pumps

- 1. Performance test on Centrifugal pump
- 2. Performance test on Reciprocating pump

# STRENGTH OF MATERIALS LABORATORY

## LIST OF EXPERIMENTS

- 1. Tension test on mild steel rod
- 2. Compression test on wood
- 3. Impact test on metal specimen (Izod and Charpy)
- 4. Rockwell Hardness test on metals.
- 5. Brinell Hardness Test on metals
- 6. Deflection test on metal beam

# **COURSE OUTCOMES**

At the end of this course, the students will be able to

- determine the coefficient of discharge through various flow measuring devices.
- measure flow in pipes and determine frictional losses.
- develop characteristic curves of pumps.
- acquire knowledge in the area of material testing
- Understand the behaviour of various materials by doing experiments

# **CO/PO** Mapping:

|     |         | Programmes Outcomes(POs) |     |     |     |     |     |     |     |          |          |          |      |      |  |
|-----|---------|--------------------------|-----|-----|-----|-----|-----|-----|-----|----------|----------|----------|------|------|--|
| COs | PO<br>1 | PO2                      | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO<br>10 | PO<br>11 | PO<br>12 | PSO1 | PSO2 |  |
| CO1 | 3       | -                        | -   | -   | -   | -   | -   | -   | -   | -        | -        | 2        | 3    | -    |  |
| CO2 | 3       | 2                        | -   | -   | -   | -   | -   | -   | -   | -        | -        | 2        | 3    | -    |  |
| CO3 | 3       | 2                        | -   | -   | 2   | 2   | -   | -   | -   | -        | -        | 3        | 3    | 3    |  |
| CO4 | 3       | -                        | -   | -   | 2   | -   | -   | -   | -   | -        | -        | 3        | 3    | -    |  |
| CO5 | 3       | -                        | -   | -   | 2   | -   | -   | -   | -   | -        | -        | 2        | 3    | -    |  |

Approved
BOARD OF STUDIES
Agriculture Engineering

# EN20401 ENGLISH PROFICIENCY COURSE LABORATORY 0 0 2 1

#### **COURSE OBJECTIVES**

To enable students to

- familiarize with the reading skills such as skimming and scanning.
- practise writing tasks to the level expected.
- develop listening strategies such as listening for key words, making inferences and identifying main ideas.
- speak well without inhibition and to assist the students in improving their vocabulary, pronunciation and comprehension of grammar.
- enrich their LSRW skills so as to crack on-line proficiency tests and to bring their career aspirations true.

#### **EXERCISES FOR PRACTICE**

- 1. Listening Exercises from TOEFL
  - a. Conversations, Lectures
- 2. Listening Exercises from IELTS
  - a. Places and directions
  - b. Actions and processes
- 3. Reading Exercises from PTE
  - a. Re-order paragraphs
- 4. Reading Exercises from IELTS
  - a. Opinions and attitudes
  - b. Locating and matching information
- 5. Reading Exercises from BEC Vantage
  - a. Single informational text with lexical gaps
  - b. Error identification
- 6. Writing Exercises from PTE
  - a. Summarize written text
- 7. Writing Exercises from IELTS
  - a. Describing maps
  - b. Describing diagrams
- 8. Speaking IELTS format
  - a. Talking about familiar topics
  - b. Giving a talk
  - c. Discussion on a Topic

# **COURSE OUTCOMES**

At the end of this course, the students will be able to

- skim, scan and infer the given texts and attend the tasks successfully.
- write coherently using appropriate vocabulary and grammar.
- listen to speeches and conversations and answer the questions.
- communicate fluently and effectively on any given topics.
- appear with confidence for on-line tests.

|     |     | (3/2                      | 2/1 indi | icates | streng | th of c | orrela | tion) 3 | -Stror | ıg, 2-M | edium, | 1-Weal | ζ.   |      |  |  |
|-----|-----|---------------------------|----------|--------|--------|---------|--------|---------|--------|---------|--------|--------|------|------|--|--|
|     |     | Programmes Outcomes (POs) |          |        |        |         |        |         |        |         |        |        |      |      |  |  |
| COs | PO1 | PO2                       | PO3      | PO4    | PO5    | PO6     | PO7    | PO8     | PO9    | PO10    | PO11   | PO12   | PSO1 | PSO2 |  |  |
| CO1 | -   | -                         | -        | 2      | 3      | -       | -      | -       | 3      | 2       | -      | -      | -    | 2    |  |  |
| CO2 | -   | -                         | 2        | 2      | -      | -       | 1      | 1       | 3      | 2       | -      | 2      | -    | 2    |  |  |
| CO3 | -   | -                         | -        | -      | -      | 3       | 1      | 2       | 3      | 2       | 2      | 3      | 2    | -    |  |  |
| CO4 | -   | -                         | -        | -      | -      | 2       | 2      | 3       | 3      | 2       | 2      | -      | 2    | -    |  |  |
| CO5 | -   | -                         | 2        | -      | -      | 1       | 2      | -       | 3      | 3       | -      | 1      | 2    | 3    |  |  |