PAAVAI ENGINEERING COLLEGE, NAMAKKAL – 637 018 (AUTONOMOUS)

B.Tech. - ARTIFICIAL INTELLIGENCE AND DATA SCIENCE

REGULATIONS 2023

(CHOICE BASED CREDIT SYSTEM)

2023-2024 Onwards

CURRICULUM

for

I - SEMESTER TO VIII - SEMESTER

PAAVAI ENGINEERING COLLEGE, NAMAKKAL – 637018 (AUTONOMOUS) B.Tech. ARTIFICIAL INTELLIGENCE AND DATA SCIENCE **REGULATIONS 2023**

(CHOICE BASED CREDIT SYSTEM) (Applicable to the students admitted during the academic year 2023-2024 onwards)

CURRICULUM SEMESTER I

S. No	Category	Course Code	Course Title	L	T	Р	C
1			Induction Programme			1	
Theory	Y		יראונראגעגעייאיאוריצערר				
2	HS	GE23101	தமிழர்மரபு/ Heritage of Tamils	1	0	0	1
3	BS	MA23101	Matrices and Calculus	3	1	0	4
4	BS	CH23101	Applied Chemistry	3	0	0	3
5	ES	ME23101	Engineering Graphics	2	0	2	3
6	ES	CS23102	Programming in C	3	0	0	3
Theory	with Labor	atory	Manuestale est				
7	HS	EN23101	Communication Skills for Engineers I	2	0	2	3
Practic	al	N					
8	BS	CH23104	Chemistry Laboratory	0	0	2	1
9	ES	GE23103	Civil and Mechanical Engineering Practices Laboratory	0	0	2	1
10	ES	CS23104	Programming in C Laboratory	0	0	4	2
	<u>e.</u>		Total	14	1	12	21

S. No	Category	Course Code	Course Title	\mathbf{L}	Т	P	C
Theory	y						
1	HS	GE23201	தமிழரும் தொழில்நுட்பமும்/ Tamils and Technology	1	0	0	1
2	BS	MA23202	Differential Equations and Numerical Techniques	3	1	0.	4
3	BS	PH23201	Physics for Information Science	3	0	0	3
4	ES	EE23201	Basic Electrical and Electronics Engineering	3	0	0	3
5	ES	CS23201	Problem Solving and Python Programming	3	0	0	3
Theory	y with Labor	atory	-4 Tel:				
6	HS	EN23201	Communication Skills for Engineers II	2	0	2	3
Practic	cal	1					
7	BS	PH23204	Physics Laboratory for Information Science	0	0	2	1,
8	ES	GE23202	Electrical and Electronics Engineering Practices Laboratory	0	0	2	1
9	ES	CS23202	Problem Solving and Python Programming Laboratory	0	0	4	2
	1 1 8	aguarde wier	ENGINEERING COLLEGE (AUE) Total	15	1	10	21
		63-34,773	Board of Studies	-	5	l	
·			Data Science	2		~	

SEMESTER II

S. No	Category	Course Code	Course Title	L	Т	Р	C
Theory	,			0		1	
1	BS	MA23303	Discrete Mathematics	3	1	0	4
2	PC	AD23301	Data structures	3	0	0	3
3	PC	AD23302	Object Oriented Programming		0	0	3
4	PC	AD23303	Software Engineering	3	0	0	3
5	MC	MC23301	Environmental Sciences and Sustainability	2	0	0	0
Theory	with Practic	al					
6	ES	EC23306	Digital Principles and System Design	3	0	2	4
Practic	al	No.					
7	PC	AD23304	Data Structures Laboratory	0	0	4	2
8	PC	AD23305	Object Oriented Programming Laboratory	0	0	4	2
9	EE	GE23301	Professional Development I	0	0	2	1
	-		Total	17	1	12	22

SEMESTER III

SEMESTER IV

S. No	Category	Course Code	Course Title	L	Т	Р	С
Theory	,					-	
1	BS	MA23403	Probability and Statistics	3	1	0	4
2	PC	AD23401	Design and Analysis of Algorithms	3	1	0	4
3	PC	AD23402	Operating Systems	3	0	0	3
4	PC	AD23403	Database Management Systems	3	0	0	3
5	MC	MC23402	Human Values and Gender Equality	2	0	0	0
Theory	with Practic	cal					
6	PC	AD23404	Computer Networks	3	0	2	4
Practic	al		2				
7	PC	AD23405	Operating Systems Laboratory	0	0	4	2
8	PC	AD23406	Database Management Systems laboratory	0	0	4	2
9	EE	GE23401	Professional Development II	0	0	2	1
			Total	17	1	12	23

tysals

S. No	Category	Course Code	Course Title	L	Т	Р	С
Theory	/						
1	PC	AD23501	Data and Information Security	3	1	0	4
2	PC	AD23502	Artificial Intelligence	3	0	0	3
3	PC	AD23503	Internet of Things	3	0	0	3
4	PC	AD23504	Foundation of Data Science	3	0	0	3
5	HS	GE23601	Entrepreneurship Development	3	0	0	3
6	PE	AD2315*	Professional Elective I	3	0	0	3
Practic	al						
7	PC	AD23506	Artificial Intelligence Lab	0	0	4	2
8	PC	AD23507	Internet of Things Lab	0	0	2	1
9	EE	AD23508	Industrial Training	0	0	2	1
10	EE	AD23509	Professional Development III	0	0	2	1
		P. L. M. S.	Total	18	1	10	24

SEMESTER V

SEMESTER VI

S. No	Category	Course Code	Course Title	L	T	P	С
Theory	7		Approximation of the second second second	- 11 - C 			
1	PC	AD23601	Cloud Computing	3	0	0	3
2	PC	AD23602	Machine Learning	3	0	0	3
3	PC	AD23603	Big Data and Analytics	3	0	0	3
4	PC	AD23604	Data Visualization	3	0	0	3
5	PE	AD2325*	Professional Elective II	3	0	0	3
6	OE	AD2390*	Open Elective I	3	0	0	3
Practic	al					Ref S	561
7	PC	AD23604	Machine Learning Lab	0	0	4	2
8	PC	AD23605	Data Visualization Laboratory	0	0	4	2
9	EE	AD23606	Design Thinking	0	0	2	1
	21 - E C C	1216	Total	18	0	10	23

h-sel.

S. No	Category	Course Code	Course Title	L	Т	Р	С
Theory							
1	PC	AD23701	Generative AI	3	0	0	3
2	PC	AD23702	Natural Language Processing	3	0	0	3
3	PC	AD23703	Deep Learning	3	0	0	3
4	PE	AD2335*	Professional Elective III	3	0	0	3
5	PE	AD2345*	Professional Elective IV	3	0	0	3
6	OE	AD2390*	Open Elective II	3	0	0	3
Practic	al						
7	PC	AD23704	Deep Learning Laboratory	0	0	4	2
8	EE	AD23705	Mini Project	0	0	6	3
			Total	18	0	10	23

SEMESTER VII

SEMESTER VIII

S. No	Category	Course Code	Course Title	L	Т	P	С
Theory	·						
1	PE	AD2355*	Professional Elective V	3	0	0	3
2	PE	AD2365*	Professional Elective VI	3	0	0	3
Practic	al						
3	EE	AD23801	Project Work	0	0	12	6
			Total	6	0	12	12
				Total Credits : 169			

1.3

Approval Approval Approval Approval Approval Ecoso Scotton Approval Approval Approval Approval

Sd

PROFESSIONAL ELECTIVE COURSES: VERTICALS

Vertical I	Vertical II	Vertical III Cloud	Vertical IV	Vertical V	Vertical VI	Vertical VII
AIDS I	Full Stack Development for IT	Computing and Data Center Technologies	Cyber Security and Data Privacy	Creative Media	Emerging Technologies	AIDS II
Soft Computing	Full Stack Development	Software Defined Networks	Network Security	Multimedia and Animation	Neural Networks	Bio- Inspired Optimizatio n Techniques
Knowledg e Engineerin g	Open Vulnerability Assessment System	Cloud Services Management	Social Network Security	Multimedia Data Compressio n and Storage	Cryptocurrenc y and Blockchain Technologies	App Developme nt
Recomme nder Systems	Open Source Systems	Storage Technologies	Modern Cryptography	UI and UX Design	Cyber Security	Introduction to toolkits for Machine Learning
Text and Speech Analysis	Software Testing and Automation	Data Warehousing	Security and Privacy in Cloud	Video Creation and Editing	Quantum Computing	Health Care Analytics
Business Analytics	Web Application Security	Virtualization	Digital and Mobile Forensics	Visual Effects	 Robotic Process Automation 	Game Theory
Image and video analytics	DevOps	Stream Processing	Ethical Hacking	Augmented Reality/Virt ual Reality	3D Printing and Design	Cognitive Science
Computer Vision	Principles of Programming Languages	Edge Computing	Engineering Secure Software Systems	Game Developmen t	Digital marketing	Ethics and AI

OPEN ELECTIVE COURSES OFFERED BY AI&DS TO OTHER DEPARTMENTS

S. No	Category	Course Code	Course Title	L	Т	Р	C
23	1.2.	1	Theory				
1	OE	AD23901	IT Infrastructure Management	3	0	0	3
2	OE	AD23902	Foundations of Artificial Intelligence	3	0	0	3
3	OE	AD23903	Fundamentals of Data Science	3	0	0	3
4	OE	AD23904	Fundamentals of Internet of Things	3	0	0	3
5	OE	AD23905	Web Mining	3	0	0	3
6	OE	AD23906	Cloud Computing	+ 3	0	0	3
7	OE	AD23907	Wearable Devices	3	0	0	3
8	OE	AD23908	Introduction to Machine Learning	3	0	0	3

Sd 5

MINOR	DEGREE	IN DATA	SCIENCE

S. No	Category	Course Code	Course Title	L	Т	Р	C
Theory							
1	PC	AD23851	Data Science Fundamentals	3	0	0	3
2	PC	AD23852	Data Analytics	3	0	0	3
3	PC	AD23853	Advanced Python Programming	3	0	0	3
4	PC	AD23854	Business Analytics	3	0	0	3
5	PC	AD23855	Machine Learning Techniques	3	0	0	3
6	PC	AD23856	Deep Learning Techniques	3	0	0	3
	12.8		Total	18	0	0	18

S.NO.	CATEGORY		CI	REDITS	AS PE	R SEM	IESTE	R		TOTAL
		I	п	ш	IV	v	VI	VII	VIII	CREDITS
1.	HS	04	04	-	-	-	03	-		. 11
2	BS	08	08	04	04		11.221	22	-	24
3	ES	09	09	04		-		-	-	22
4	PC		-	13	18	19	13	11	-	74
5	PE	-	-	-	2	03	03	06	06	18
6	OE	-	(17)	-	-		03	03		06
7	EE	-		01	01	02	01	03	06	14
8	MC		242	0	0	2	-	0	2	0
	TOTAL	21	21	22	2.3	24	23	2.3	12	169

SUMMARY

SI

ONE CREDIT COURSES

S.No	Category	Course Code	Course Title	L	Т	Р	С
1.	OCC	AD23951	Amcat (Online Placement Aptitude Certification)	0	0	2	1
2.	OCC	AD23952	E-litmus (Online Placement Aptitude Certification)	0	0	2	1
3.	OCC	AD23953	Nasscomnac-tech (Online Placement Aptitude Certification)	0	0	2	1
4.	OCC	AD23954	I-pat(Online Placement Aptitude Certification)	0	0	2	1
5.	OCC	AD23955	Oracle-SQL Fundamentals	0	0	2	1
6.	OCC	AD23956	Spoken Tutorial - JAVA Business Application	0	0	2	1.9
7.	OCC	AD23957	CCNA-Certification	0	0	2	1
8.	OCC	AD23958	SCJP/OCPJP-Sun Certified Java Programmer / Oracle Certified Professional Java Programmer	0	0	2	1
9.	OCC	AD23959	Android Application Development	0	0	2	1
10.	OCC	AD23960	PC Hardware and Trouble Shooting	0	0	2	1
11.	OCC	AD23961	E-Commerce Security	. 0	0	2	1
12.	OCC	AD23962	Coursera (Online Courses)	0	0	2	1
13.	OCC	AD23963	Edx (Online Courses)	0	0	2	1
14.	OCC	AD23964	Udemy(Online Courses)	0	0	2	1
15.	OCC	AD23965	NPTEL/Swayam (Online Courses)	0	0	2	1
16.	OCC	AD23966	Spoken Tutorial – R	0	0	2	1
17.	OCC	AD23967	Spoken Tutorial - Android APP Using KOTLIN	0	0	2	1
18.	OCC	AD23968	Spoken Tutorial - PHP and MySQL	0	0	2	1
19.	OCC	AD23969	Chat GPT	0	0	2	1
20.	OCC	AD23970	Office Automation	0	0	2	1
21.	OCC	EP23951	Soft Skill Laboratory I	0	0	2	1
22,	OCC	EP23952	Soft Skill Laboratory II	0	0	2	1

·Sch

VALUE ADDED COURSES

S.No	Course Code	Course Title (with 30 or more hours)
1	23ADVC401	Data Analytics with R
2	23ADVC501	AR VR and MR using Unity
3	23ADVC601	iOS App Development
4	23ADVC701	Full Stack Development
5	23ADVC801	Android App Development

J.Sd>

MA23303 DISCRETE MATHEMATICS 3 1 0						
		(Common to CSE, CSE(IOT), CSE(AI&ML), Cyber, AI&DS, IT)				
coui	RSE O	BJECTIVES				
To ena	able the	students to				
1.	inter Phys	pret the introductory concepts of Logic, which will enable them to model and analy ical phenomena involving arguments.	ze		2.5	
2.	impl perfe	ement the definitions of relevant vocabulary from quantifiers and inference and be orm related calculations.	able to			
3.	appl and	the methodologies involved in solving problems related to fundamental principles mplement the mathematical ideas for relations.	of sets	5	-15	
4.	unde	rstand the concepts of functions and its types.	241 (m		10	
5.	acqu	ire knowledge and understand the concepts of graphs and its models.	-		12	
UN	ITI	PROPOSITIONAL CALCULUS	-		12	
Dron	anition	Logical connectives, Compound propositions, Conditional and bi conditional pr	anositi	one '	Fruth	
UN	IT II licates -	PREDICATE CALCULUS Statement function, Variables, Free and bound variables; Quantifiers; Universe of d	iscours	e; Lo	gical	
Law: Valie	s, Nori dity of	nal forms, Principal conjunctive and disjunctive normal forms; Rules of inferen arguments.	ce; Ar	gume	nts -	
Pred	licates -	Statement function, Variables, Free and bound variables; Ouantifiers; Universe of d	iscours	e: Lo	gical	
equiv spec	valence ificatio	s and implications for quantified statements; Theory of inference - The run and generalization; Validity of arguments.	les of	univ	ersal	
UNI	пп	SET THEORY			12	
Basi	c conc	epts - Notations, Subset, Algebra of sets, The power set; Ordered pairs and Ca	artesiar	ı pro	duct;	
Rela Equi	tions or	a sets - Types of relations and their properties, Relational matrix and the graph of relations. Partial ordering - Posets, Lattices as Posets, Properties of lattices.	ation;	Partit	ions;	
UNI	TIV	FUNCTIONS			12	
Defin Inver funct	nitions rse fun tions; P	of functions, Classification of functions, Type of functions, Examples, Composit ctions; Binary and n-ary operations; Characteristic function of a set; Hashing func- ermutation functions.	ion of tions;	func Reci	tions, trsive	
UN	IT V	GRAPHS			12	
Grap grapl	ohs and h isomo	graph models; Graph terminology and special types of graphs; Matrix representation or phism; Connectivity - Euler and Hamilton paths.	on of g	yraph	s and	
-	-	TOTAL PE	RIOD	s	60	

COU At th	RSE OUTCOMES e end of this course, the students will be able to	BT MAPPED (Highest Level)
CO1	apply propositional logic to validate the arguments.	Applying (K3)
CO2	apply the rules of inference and methods of proof in predicate calculus to verify the validity of arguments.	Applying (K3)
CO3	explain the knowledge of various set theoretic concepts.	Applying (K3)
CO4	characterize different types of functions and solve recurrence relations.	Understanding(K2)
CO5	apply the concepts of discrete structures such as Euler and Hamilton paths.	Applying (K3)
TEXT	BOOKS	CHEVING STORES
1.	Trembly, J.P. and Manohar, R., "Discrete Mathematical Structures with Application Tata McGraw-Hill, 35 th Reprint, 2008.	ns to Computer Science",
2.	Veerarajan T., "Discrete Mathematics with Graph Theory and Combinatorics" McGraw Hill Publishing Company, New Delhi, 2013.	", Reprint Edition, Tata
REFEI	RENCES	hus established a state
1.	Kenneth H. Rosen, "Discrete Mathematics and its Applications", 8th Edition, Tata Private Limited, New Delhi, 2012.	McGraw Hill Education
2.	Tamilarasi, A., and Natarajan, A. M., "Discrete Mathematics and its Applicatio Publishers, 2008.	ns", 3 rd Edition, Khanna
3.	Lipschutz. S. and Mark Lipson., "Discrete Mathematics", Schaum's Outlines, Tat Ltd., New Delhi, 3 rd Edition, 2010.	a McGraw Hill Pub. Co.
4.	Ralph. P. Grimaldi, "Discrete and Combinatorial Mathematics: An Applied Introd 4 th Edition, Pearson Education, 2002.	uction ",

CO PO MAPPING:

			(1/2/3	Mapp indica	ping of ates stre	Course ength o	Outcon f correl:	nes with ation) 3	h Progr -Strong	ramme O g, 2-Med	outcomes ium,1-W	eak		Bank
1	Programmes Outcomes (POs)												2	
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
C01	3	2	2	3	-	-		-	-	-		3	1	2
CO2	3	2	3	3	-	-	-		-	-	-	3	1	2
CO3	2	3	3	2	66 <u>7</u> - 9	n pi	200 <u>2</u> 017		-		Xoğuni Koğuni	2	1	2
CO4	2	2	2	3	-	-		(upsiling			A6 - au	2	1	2
CO5	3	3	3	3	-	-	-	-	-	-	-	3	1	2

	DZ3301 DATA STRUCTURES 5 0 0 3								
COURSE O	BJECTIVES				1				
Fo enable the	e students to		-						
1. under	rstand the concepts of	f ADTs.							
2. learn	linear data structures	like lists, stacks.	-						
3. apply	/ linear data structures	s for queues.		-					
4. apply	/ Non-linear data struc	ctures for various application.		1	-				
5. acqui	ire different types of s	sorting, searching and hashing algorithms.		al.	1				
UNIT I	ABSTRACT DA	TA TYPES (ADT)		9	,				
Introduction	n to Data Structures -	Definition, Need of Data Structures, Types of Data Structures;	Abst	ract D	ata				
- Polynomia	ALADT.	TDUCTUDES STACKS							
UNIT II	LINEAR DATA S	STRUCTURES - STACKS		9)				
Application									
UNIT III	s of Stack - Conversion	on of Infix to prefix expression, Conversion of Infix to postfix STRUCTURES – QUEUES	expro	ession)				
UNIT III Queue ADT	s of Stack - Conversion LINEAR DATA	on of Infix to prefix expression, Conversion of Infix to postfix STRUCTURES – QUEUES eue, Operations, Array based Implementations, Linked List Im	expro	ession 9 entatio) on;				
UNIT III Queue ADT Circular Qu	s of Stack - Conversion LINEAR DATA - Definition of Que eue; Priority Queue;	on of Infix to prefix expression, Conversion of Infix to postfix STRUCTURES – QUEUES ue, Operations, Array based Implementations, Linked List Im Applications of Queue.	expro	ession 9 entatio	on;				
UNIT III Queue ADT Circular Qu UNIT IV	s of Stack - Conversion LINEAR DATA - Definition of Que eue; Priority Queue; A NON-LINEAR I	on of Infix to prefix expression, Conversion of Infix to postfix STRUCTURES – QUEUES eue, Operations, Array based Implementations, Linked List Im Applications of Queue. DATA STRUCTURES – TREES, GRAPHS	plem	ession 9 entatio) on;				
UNIT III Queue ADT Circular Que UNIT IV Tree ADT -	s of Stack - Conversion LINEAR DATA T – Definition of Que eue; Priority Queue; A NON-LINEAR I Basic Tree Terminol	on of Infix to prefix expression, Conversion of Infix to postfix STRUCTURES – QUEUES tue, Operations, Array based Implementations, Linked List Im Applications of Queue. DATA STRUCTURES – TREES, GRAPHS logies, Binary Tree ADT, Expression Trees, Tree Traversals, A	plem	ession entation cations) on;)				
UNIT III Queue ADT Circular Qu UNIT IV Tree ADT - Trees, Binar	s of Stack - Conversion LINEAR DATA F – Definition of Que eue; Priority Queue; A NON-LINEAR I Basic Tree Terminol ry Search Tree ADT, A	on of Infix to prefix expression, Conversion of Infix to postfix STRUCTURES – QUEUES eue, Operations, Array based Implementations, Linked List Im Applications of Queue. DATA STRUCTURES – TREES, GRAPHS logies, Binary Tree ADT, Expression Trees, Tree Traversals, A AVL Trees; Graph – Definitions, Representation of Graphs, Ty	plem plem	ession 9 entations cations f Grap	on; on;				
UNIT III Queue ADT Circular Qu UNIT IV Tree ADT - Trees, Binar Depth-first t	s of Stack - Conversion LINEAR DATA F – Definition of Que eue; Priority Queue; A NON-LINEAR I Basic Tree Terminol ry Search Tree ADT, A traversal, Breadth-firs	on of Infix to prefix expression, Conversion of Infix to postfix STRUCTURES – QUEUES eue, Operations, Array based Implementations, Linked List Im Applications of Queue. DATA STRUCTURES – TREES, GRAPHS logies, Binary Tree ADT, Expression Trees, Tree Traversals, A AVL Trees; Graph – Definitions, Representation of Graphs, Ty st traversal, Topological Sort.	plem	ession entations cations f Grap	on;				
UNIT III Queue ADT Circular Qu UNIT IV Tree ADT - Trees, Binar Depth-first t	s of Stack - Conversion LINEAR DATA F – Definition of Que eue; Priority Queue; A NON-LINEAR I Basic Tree Terminol ry Search Tree ADT, A traversal, Breadth-firs SEARCHING, S	on of Infix to prefix expression, Conversion of Infix to postfix STRUCTURES – QUEUES tue, Operations, Array based Implementations, Linked List Im Applications of Queue. DATA STRUCTURES – TREES, GRAPHS logies, Binary Tree ADT, Expression Trees, Tree Traversals, A AVL Trees; Graph – Definitions, Representation of Graphs, Ty st traversal, Topological Sort. SORTING AND HASHING TECHNIQUES	plem plem	ession entations f Grap	on; on; hs,				
UNIT III Queue ADT Circular Qu UNIT IV Tree ADT - Trees, Binar Depth-first t UNIT V Searching -	s of Stack - Conversion LINEAR DATA F – Definition of Que eue; Priority Queue; A NON-LINEAR I Basic Tree Terminol ry Search Tree ADT, A traversal, Breadth-firs SEARCHING, S Linear Search, Binar	on of Infix to prefix expression, Conversion of Infix to postfix STRUCTURES – QUEUES eue, Operations, Array based Implementations, Linked List Im Applications of Queue. DATA STRUCTURES – TREES, GRAPHS ogies, Binary Tree ADT, Expression Trees, Tree Traversals, A AVL Trees; Graph – Definitions, Representation of Graphs, Ty st traversal, Topological Sort. SORTING AND HASHING TECHNIQUES y Search; Sorting - Bubble Sort, Insertion Sort, Shell Sort, Rad	plem plem pplic pes o	ession entations f Grap	on; on; ohs,				
UNIT III Queue ADT Circular Qu UNIT IV Tree ADT - Trees, Binar Depth-first t UNIT V Searching - Sort; Hashin	s of Stack - Conversion LINEAR DATA F – Definition of Que eue; Priority Queue; A NON-LINEAR I Basic Tree Terminol ry Search Tree ADT, A traversal, Breadth-firs SEARCHING, S Linear Search, Binar ng - Hash Functions, S	on of Infix to prefix expression, Conversion of Infix to postfix STRUCTURES – QUEUES bue, Operations, Array based Implementations, Linked List Im Applications of Queue. DATA STRUCTURES – TREES, GRAPHS logies, Binary Tree ADT, Expression Trees, Tree Traversals, A AVL Trees; Graph – Definitions, Representation of Graphs, Ty st traversal, Topological Sort. SORTING AND HASHING TECHNIQUES y Search; Sorting - Bubble Sort, Insertion Sort, Shell Sort, Rad Separate Chaining, Open Addressing, Rehashing, Extendible I	plem plem pplic pes o dix So Hashi	ession gentations f Grap ort, Ho ng.	on;) hs, eap				
UNIT III Queue ADT Circular Qu UNIT IV Tree ADT - Trees, Binar Depth-first t UNIT V Searching - Sort; Hashin	s of Stack - Conversion LINEAR DATA F – Definition of Que eue; Priority Queue; A NON-LINEAR I Basic Tree Terminol ry Search Tree ADT, A traversal, Breadth-firs SEARCHING, S Linear Search, Binar ng - Hash Functions, S	on of Infix to prefix expression, Conversion of Infix to postfix STRUCTURES – QUEUES Eue, Operations, Array based Implementations, Linked List Im Applications of Queue. DATA STRUCTURES – TREES, GRAPHS ogies, Binary Tree ADT, Expression Trees, Tree Traversals, A AVL Trees; Graph – Definitions, Representation of Graphs, Ty st traversal, Topological Sort. SORTING AND HASHING TECHNIQUES y Search; Sorting - Bubble Sort, Insertion Sort, Shell Sort, Rad Separate Chaining, Open Addressing, Rehashing, Extendible I INGCOLLEGE	expro plem pplic pes o dix So Hashi	ession entations f Grap ort, Ho ng.	on; on; ohs, eap				

Artificial Intelligence Data Science

NAMAKKAL-637018

COUR	RSE OI	UTCON	IES	1	1.1-0			15			7.1	BT N	IAPPE	D
At the	end of	this cou	rse, the	students	will be	able to						(High	est Leve	el)
COI	un	derstand	d the dif	ferent da	ata struc	tures fo	or repre	sentatio	n.	P.S.	1.20	Underst	anding	(K2)
CO2	sel	ect vari	ous line	ar data s	tructure	s for pr	oblem-	solving	using s	tack.		Analy	zing (K	4)
CO3	so	lve the c	computa	tional p	oblems	using q	ueue.					Appl	ying (K.	3)
CO4	exa	amine o	f variou	s concep	ots of tre	ees and	graphs	with rea	al time a	applicati	on.	Appl	ying (K	3)
CO5	de	monstra	te the co	oncept o	f sorting	g, searcl	ning an	d hashir	ng techr	niques.	Dinite 3	Analy	zing (K	4)
TEXT	BOOI	KS										-		
1.	Mark Educa Reem	Allen V ation,20 a Thare	Veiss, — 20. ja, —Da	-Data St	ructures	s and Al	lgorithr Second	n Analy I Edition	vsis in C 1, Oxfor	C, 2nd Ed rd Unive	lition, P ersity Pre	earson ess, 201	8.	+
REFE	RENC	ES						10418	aivr	<u> </u>	Dy In	28.4		171
1.	Micha in Pyt	ael T. G hon", A	oodrich. .n Indiai	, Robert 1 Adapta	o Tamas ation, Jo	ssia, and hn Wild	d Micha ey & So	ael H. G ons Inc.	oldwas , 2021.	ser, "Da	ta Struc	tures &	Algoriti	ıms
2.	Ellis I Editic	Horowit n,Unive	z, Sartaj ersities I	j Sahni a Press, Hy	und Susa yderaba	an Ande d, 2018	erson Fi	reed, "F	undame	entals of	Data St	ructures	in C", 2	2nd
3.	R.Ver	nkatesar	ı, S.Lov	elyn Ro	se, "Dat	a Struct	tures",	1 st Editi	on, Wil	ey, 2019).			
4.	Seym	our Lips	schutz, '	'Data St	ructures	s with C	", 4 th E	dition,	MCGra	w Hill E	ducation	n, 2017.	EAGATRS.	all search
CO-PC) MAP	PING:				1.23	D.E.D	6 - 100LS	(T(j))	Wite /	That is	6.04.H	- 6	THA:
i pipe		Mapp (1	oing of (Course Pi icates s	Outcom ogram trength	ne (CO' me Spe of cori	s) with cific O relation	Progra utcome 1) 3-Str	amme (s (PSO ong, 2-	Outcom 's) Medium	es (PO': 1, 1-We	s) and ak	- 141/	i sak
		and the first				P	O's						PSC)'s
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2
C01	2	2	2	3	3	no <u>t</u> eli	101_20	th_res	1920	1200	1	3	3	2
CO2	3	3	3	-	3	-	- 201	a()24.2	Hostor (194-194 19	1	3	3	2
CO3	3	3	3	<u>14</u>) [S	3	3.34.1	- 1413	17(4)()	(19 a	1.4-3L	1	3	3	2
CO4	3	3	3		3	-	7	-	66	a dina	1	3	3	2
CO5	3	3	3	÷	3	-		-	-		1	3	3	2

Approved a Approved A

AD23.	23302OBJECT ORIENTED PROGRAMMING3003										
COUR	RSE OB	JECTIVES	ngeu	11/1	1000	115					
Гo ena	ble the	students to									
1.	under	stand OOP concepts and basics of Java programming language.									
2.	know	the principles of inheritance, packages, and interfaces.									
3.	devel	op a java application with threads and generics classes.									
4.	define	e exceptions and use I/O streams.									
5.	under	stand Graphical User Interface Application using JavaFX.									
UNIT	I	INTRODUCTION TO OOP AND JAVA	III IZ DA		1	9					
Java Java Progr	Buzzwo ammini bers- Ja	ords – Overview of Java – Data Types, Variables and Arrays – Operators – g Structures in Java – Defining classes in Java – Constructors-Methods -Activa Doc comments	Control S cess speci	state fiers	ment	g – ts – atic					
UNIT	п	INHERITANCE, PACKAGES AND INTERFACES				9					
Overl	oading	Methods – Objects as Parameters – Returning Objects –Static Nested	and Inne	er C	asse	2					
Acces UNIT	ss –Imp III	EXCEPTION HANDLING AND MULTITHREADING	n laot			9					
Excer	otion Ha	andling basics – Multiple catch Clauses – Nested try Statements – Java's E	uilt-in Ex	cept	ions	-					
User Threa	defined ids – Pri	Exception. Multithreaded Programming: Java Thread Model–Creating a Torities – Synchronization – Inter Thread Communication Suspending –Result threading, Wrappers – Auto boxing	Thread an uning, and	d M d Sto	ultip oppir	le ng					
UNIT	IV	I/O, GENERICS, STRING HANDLING	The second second	-		9					
I/O B	asics -	Reading and Writing Console I/O – Reading and Writing Files – Streams	- Generic	s: G	ener	ic					
Progr Basic	amming String	g – Generic classes – Generic Methods – Bounded Types – Restrictions and class, methods and String Buffer Class.	Limitatio	ns. S	tring	s:					
UNIT	V	JAVAFX EVENT HANDLING, CONTROLS AND COMPONENT	S	_	-	9					
JavaF Butto Pane -	X Ever n – Rad – HBox	nts and Controls: Event Basics – Handling Key and Mouse Events. Contr io Buttons – List View – Combo Box – Choice Box – Text Controls – Scro and VBox – Border Pane – Stack Pane – Grid Pane. Menus – Basics – Mer	ols: Chec ll Pane. La nu – Menu	kbo: ayou u bar	x, To its – rs – N	oggl Flov Men					
Item.			PDIODO	_	22	17					
		TOTAL P	ERIODS	ē.	4	5					

COURS	SE OU	тсом	ES			19.2	28				1999	BT M	APPE	D
At the e	nd of tl	nis cour	se, the s	tudents	will be	able to						(Highe	st Leve	el)
CO1	exp	lain the	basic C	OP and	Java co	oncepts.	al due	tion (chur		ur orda	30	Underst	anding	(K2)
CO2	den	nonstrat	e progra	ams usir	ng inher	itance, j	package	es and ir	nterface	s.	19	Apply	ing (K	3)
CO3	assi real	gn exce -world	eption h problem	andling ns.	mechai	nisms a	nd mul	tithread	ing con	cepts to s	solve	Apply	ing (K	3)
CO4	cust	tomize erics co	Java app ncepts.	olication	ns with	I/O pac	kages, s	string cl	asses, c	ollections	s and	Apply	ring (K	3)
CO5	app dev	ly the o eloping	concepts GUI ba	s of evensed app	ent hand lication	lling, Ja s.	avaFX	compon	ents an	d control	s for	Apply	ving (K	3)
TEXT I	зоок	S	× 1/2 1	NICE ROLL	Printain)	terine 2	is minut	Printing	Distan 15	(Arin)	ni al n	ego Au	nista and	agn
1.	Herber	t Schild	it, "Java	a: The C	Complete	e Refer	ence",	11th Ed	ition, N	IcGraw H	lill Edu	ucation,	New D	elhi,
Sec.	2019.						1714			P. TOR				
2.	Herber	t Schil	dt, "Inti	oducing	g JavaF	X 8 Pr	ogramn	ning", 1	st Edit	ion, McG	iraw H	lill Educ	ation,	New
(milatin	Delhi.	2015.	enviet	t-pith	inexer de la		Jen via	an ing				Stoke!		
REFER	ENCE	S	1993	Sales the	ti sendo	ford 1	940 (c.)	Public	nin Mila	-Asianias	Care II	6 integr	b karl	58.A
1	Cay S	Horst	mann '	"Core	ava Fu	ndame	ntals".	Volum	e 1. 11	th Edition	n. Prer	ntice Ha	11, 201	8.
2	Deitel	& Deite	al "Jave	· How I	o Progr	am" Pi	rentice	Hall of	India, 2	010.	1110	1	ATR:	
2.	Allen	D Dem	nor and	Chuin N	Antiple	4 "Thin	k Iava	How to	Think	Like a Co	ompute	er Scient	ist"	10.5
3.	Allen I	B. Dow	ney and		tion 20	1, 1111	ik Java.	110w tt) THINK	Like a Co	Jinput	or bereint		
	O'Rell	iy, Can	forma, I	First Eq.	1101, 20	/10.	• • •	100003-00	0.11	· • • • • • • •	w Wes	lar Drof	Panion	
4.	Joshua	Bloch	, "Effec	tive Jav	a: A Pr	ogram	ning La	anguage	Guide	, Addiso	on-wes	sley Proi	essiona	ai, U.
	Third	Edition,	2018.		1. 1.3				-	e v takente	<	and the second		-
CO-PO	MAP	PING:									1 1 1 1	10.00		
		Mapp (1	ing of (Course Pi	Outcom rogram	ne (CO me Spe	's) with cific O	Progra utcome	amme (s (PSO	Outcomes 's) Medium.	s (PO' 1-We	s) and ak		
		(1)	215 mu	icates s	engen	P	O's	.,	ong, 2			11	PS	O's
Cos	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	2	2	2	3	2	-	-	-	-	-	-	2	2	2
COI	1.47.64	1.237				-687	30.10	- 20010		12171	2-1-		-	10

bagangak Board of Studias Artificial Intelligence

AD23303 SOFTWARE ENGINEERING 3 0									0	3	
COURSE	OBJEC	TIVES									
Fo enable	the stude	ents to									
1. lea	rn the na	ture of software	e, software	process and	software et	hics				_	
2. un	derstand	process models	and the typ	es of softwa	are requirem	ents and s	oftware desi	gn		-	_
3. kn	ow how t	o model using l	UML	ini destination	No. of Contraction					-	_
4. uno	derstand	the different cat	tegories of s	software tes	ting	-	-	_	_		
5. lea risl	rn the wo	orking knowled ment, quality n	ge of the tec	chniques foi	estimation,	software	process/proc	duct m	etrics,	,	
UNIT I		INTRODUCT	TON TO S	OFTWAR	E ENGINEI	ERING				1	9
engineer process p	ing- a la patterns, j	yered technolo	ogy, a proce nent, person	ess framew al and team	ork, the car process mo	ability ma dels, Softv	aturity mode	el inte Seven	gratio Princ	n (C iples	MMI)
UNIT II		PROCESS MO	ODELS		7.						9
Context i	nodels, b nd desig	ehavioural mod	DELS dels, data m gn concepts	odels, objec, the design	t models, str model, Mo	uctured m delling co	ethods. Desi mponent lev	ign En /el des	gineer sign: I	ring: 1 Desig	9 Desig n clas
based con	mponents	s, conducting co	DATECIES	evel design,	User Interfa	ce design:	Golden Ru	es		<u></u>	0
UNITIV		Ling Sti	KATEGIE	5		1.0		C			9
A strateg white-bo: and softy analysis r	x testing, vare insp nodel, m	Functional and ections, autom etrics for design	d Non-Func ation testin n model	strategies i stional testin ig tools – S	or conventiong, validatio Selenium, Pi	n testing, a	are, stages o system testin trics: Softw	ng, the	ng, oia : art oi iality,	f deb metr	ox an uggin ics fc
UNIT V		PROJECT MA	ANAGEMI	ENT							9
Process a managem quality as Software	and Proje nent: Read ssurance, change	ect Metrics - Es ctive vs proactiv software revie	stimation fo ve risk strate ews, formal	or Software egies, softw technical 1	projects – are risks, Qu eviews, soft	Project Pl ality Man ware relia	anning & P agement: Qu bility, ISO	roject iality c 9000	Scheo concep qualit	iuling ots, so y star	z, Ris oftwar ndard:
			CRIN	G COLLEGE	AUTO		TOTAL	PERIC	ODS		45
	1		Boa	Approved and of Studies ial Intelligence ata Science	18 th						

COURS	E OUTCOMES	BT MAPPED
At the en	d of this course, the students will be able to	(Highest Level)
CO1	classify different process assessment models and describe CMMI for real life scenarios.	Understanding (K2)
CO2	choose the appropriate process model and develop proper documentation with the minimum requirements for the development of software application.	Applying (K3)
CO3	evaluate requirements to high level design models to develop scalable, maintainable, and reliable software systems.	Analysing (K4)
CO4	illustrate different testing strategies and methods to test and ensure the quality and reliability of software products.	Analysing (K4)
CO5	determine the cost of software and prepare software project planning and. to solve risks identified to produce quality software product	Applying (K3)
EXT B	OOKS	
1. S I	oftware Engineering, A practitioner's Approach-Roger S. Pressman, 9th edition, nternational Edition, 2023	Mc Graw Hill
2. S	oftware Engineering- Sommerville, 10th edition, Pearson Education, 2021	
EFERI	ENCES	
I. The Educ	unified Modeling Language User Guide Grady Booch, James Rambaugh cation,2017	, Ivar Jacobson, Pearso
2. Soft 2013	ware Engineering Principles and Practice- Waman S Jawadekar, The Mc Graw-H	lillCompanies, 5 th Editio
. Fund	lamentals of Object-Oriented Design using UML Meiler Page-Jones: Pearson Edu	cation, 2nd Edition,2015
. Pank	aj Jalote, "Software Project Management in Practice", Pearson Education, New D	Delhi, 3 rd Edition, 2019

CO PO MAPPING

Mapping of Course Outcomes(COs) with Programme Outcomes(POs) and Programme Specific Outcomes(PSOs):

(1,2,3 indicates the strength of correlation) 3 - Strong, 2 - Medium, 1 - Weak

			1			Pro	ogramı	ne Out	comes	(POs)				
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
C01	3	2	1	-	-	-	3	-	3	2	2	-	2	2
CO2	2	3	-	2	-	3	-	2	3	3	20 68 A.		2	2
CO3	2	2	3	2	3	-	1024	-	2	. 3	NETTER 1	100000	2	3
CO4	2	2	-	189 <u>-</u> 191	3	-	120	2	3	2	2		2	3
CO5	2	2	2	-	-	-	-,	-	1	2	3	(trand)	2	2

spoopilietat taipitata

MC 23.	301	ENVIRON	MENTAL SCIENCES AND SUSTAINABILITY	2	0	0	0
COUR	SE OE	JECTIVES					
To enal	ole the	students to					
1	estab	lish the knowledg	e of precious resources of the environment and their varie	ous i	mpa	cts.	
2	creat	e awareness on ec	osystem and biodiversity preserve.				
3	learn	scientific and tec	hnological solutions to current day pollution issues.				
4	analy mana	ze climate chang gement.	es, concept of carbon credit and the challenges of environ	men	tal		
5	unde	rstand green mate	rials, energy cycles and the role of sustainable urbanization	on.			
UNIT	1	ENVIRONM	ENT AND NATURAL RESOURCES			T	6

Definition, scope and importance of Environment. Forest resources: Use and overexploitation, deforestation, - mining, dams and their effects on forests and tribal people. Water resources: Use and over- utilization of surface and ground water, dams-benefits and problems. Food resources: effects of modern agriculture, fertilizer-pesticide problems. Role of an individual in conservation of natural resources.

UNIT II

ECOSYSTEMS AND BIODIVERSITY

Concept of an ecosystem: Structure and function of an ecosystem - ecological succession food chains and food webs. Ecosystems- Types of ecosystem: Introduction - forest ecosystem and lake ecosystems. Biodiversity: Introduction - definition (genetic - species - ecosystem). Diversity - Value of biodiversity - Hotspots of biodiversity - Conservation of biodiversity: Insitu and ex-situ conservation of biodiversity.

UNIT III

ENVIRONMENTAL POLLUTION

Pollution: Définition - air pollution - water pollution - marine pollution - noise pollution. Solid waste management: Causes - effects - control measures of urban and industrial wastes. Role of an individual in prevention of pollution - Electronic waste -Sources-Causes and its effects- Pollution case studies-Field study of local polluted site – Industrial/Agricultural

UNIT IV SUSTAINABILITY AND ENVIRONMENT

Sustainability - from unsustainability to sustainability-millennium development goals, and protocols. Sustainable development goals-targets, indicators and intervention areas. Climate change— acid rain - ozone layer depletion. Regional and local environmental issues and possible solutions-case studies. Concept of carbon credit, carbon footprint. Environmental management in industry-A case study.

UNIT V

SUSTAINABILITY PRACTICES

Zero waste and R concept, Circular economy, ISO 14000 Series, Environmental Impact Assessment - Sustainable energy: Non-conventional Sources, Green materials, Energy Cycles carbon cycle, emission and sequestration, Green Engineering: Sustainable urbanization- Socio economical and technological change.

TOTAL PERIODS 30

6

6

6

6

At the	end of th	is cour	se, stu	dents	will be	e able	to	3				B	T Maj	pped	
COL	find the	metho	dofo	onseru	ation	of nati	ural res	ources		-	-	(H 11	ighest	Level)	(K2)
001	undaret	and and		n and	the co	nan	tion o	fhiadi	varcity		0	U	donate	inding	(12)
002	underst		osyster	n and	the co	nserva	ation o	1 blodi	versity	(+	-		idersta	inding	(K2)
003	aware o	of envir	onmer	ital po	Ilution	n and i	nterpro	et its e	rrects.		-	U	idersta	anding	(K2)
CO4	apply s societa	ustaina I develo	ble de opmen	velopi t.	ment f	or tec	hnolog	cical ac	lvance	ment a	nd		App	olying	(K3)
CO5	measur	e the su	istaina	bility	practi	ces fo	r greer	n energ	y cycl	es.			Ana	alyzing	(K4)
TEXT	F BOOK	s			-					1111	-				
1.	Benny	Joseph,	, "Env	ironm	ental S	Scienc	e and I	Engine	ering"	, Tata N	1cGr	aw Hil	l, 1 st ed	lition,	2017.
4	3 rd editi	on, Pea	rson, 2	2022.	ch r. i		introdu	cuon t	O LIIVI	ronnen	itar E	ngmee	ring an	iu sele	nee ,
REFI	ERENCE	s												194	
1	. Willian Concer	n P. Cu n", Mc	inning Graw	ham a Hill, 1	nd Ma 6 th ed	ry An ition, 2	n Cunr 2023.	ningha	m, "Er	nvironm	ental	Scien	ce: A C	Global	
2	. C. S. R Publica	ao, Env tion, N	vironm lew De	ental elhi, 4	Pollut h editi	ion an on, 20	d Cont 21.	trol eng	gineeri	ng, Nev	w Ag	e Inter	nationa	al (P) It	d
3	. Erach I 2020.	Bharucl	ha, "To	extboo	k of E	Enviro	nmenta	al Stud	ies", U	Jniversi	ties F	Press P	vt. Ltd	., editio	on,
4	. Rajago Editior	palan, 1 1, 2015.	R, 'En	viron	nental	Studi	es-Fro	m Cris	is to C	Cure', O	xford	l Unive	ersity P	ress, 4	th
CO-I	PO MAP	PING :		-	-										
Map	ping of C	ourse (Outco	me (C	O's) v	with P Ou 1 of co	rogra tcome rrelat	mme (s PSO ion) 3-	Outcon 's -Stron	mes (PC g, 2-Me	D's) a	nd Pr	ogram /eak	me Sp	ecifi
	1.1	1			- Alt		P	O's					+-	PS	O's
0	co's	1	2	3	4	5	6	7	8	9	10	11	12	1	2
(CO1	-	1		-	-	2	-	-	1	1	-	-	4	-
	CO2	-	2	-	-	1	1	-	1	4	-	-	-	-	-
(1	0.32		-	-			-				-	-	1
(CO3	2	-	1	1	-	-	-	2	-		-	2	-	-
	CO3	2	- 2	1	1	-	-	-	2	-	-	-	2	-	-

Approved BOARD OF STUDIES Chemistry 6 40 NAJ

F	С	2	з	3	n	6
10	0	يند	v	e	v	v

DIGITAL PRINCIPLES AND SYSTEM DESIGN

3

4

9

9

9

9

9

COURSE OBJECTIVES

To enable the students to

1. understand the fundamentals of Boolean algebra and digital logic gates.

2. know the concepts of various combinational circuits.

3. gain knowledge about different synchronous sequential circuits.

4. be familiar with the operation of asynchronous sequential circuits.

5. acquire basic knowledge about Memory and Programmable Logic Devices.

UNIT I BOOLEAN ALGEBRA AND LOGIC GATES

Boolean laws and Theorem, Boolean functions - Canonical and Standard forms - Sum of Products, Product of Sums; Simplifications of Boolean functions - Karnaugh map, Quine McCluskey method, Don't care Conditions; Implementations of Boolean Functions using logic gates, NAND, NOR.

UNIT II COMBINATIONAL CIRCUITS

Design procedure of Combinational circuits - Adders, Subtractors, 4-bit Parallel adder / Subtractor, Carry look ahead adder, BCD adder, Multiplexer, Demultiplexer, Encoder, Decoder, 2-bit Magnitude Comparator; Code converters, Parity generator and checker.

UNIT III SEQUENTIAL CIRCUITS

Latches, Flip flops - SR, JK, D, T Flip-flops, Realization of flip flop using other flip flops; Classification of sequential circuits - Asynchronous and Synchronous counters; Moore and Mealy; Design of Synchronous counters - Modulo - N counter; Shift registers - SISO, SIPO, PISO, PIPO.

UNIT IV ASYNCHRONOUS SEQUENTIAL CIRCUITS

Design of fundamental mode and pulse mode circuits - Primitive flow table, Minimization of Primitive flow table, State assignment, Excitation table; Cycles - Race Free State assignment; Hazards - Static, Dynamic, Essential Hazards, Elimination of Hazards.

UNIT V MEMORY AND PROGRAMMABLE LOGIC DEVICES

Classification of memories - ROM organization, types; RAM organization, types - Static RAM Cell, Dynamic RAM cell; Memory Expansion; Programmable Logic Devices - PLA, PAL, Basics of FPGA.

TOTAL PERIODS 45

LIST OF EXPERIMENTS

1. Design and implementation of Adders and Subtractors using logic gates.

Design and implementation of Binary to Gray code and Gray to Binary code Code converters using logic gates.

3. Design and implementation of Multiplexer, Demultiplexer.

- 4. Design and implementation of Encoder and decoder.
- 5. Design and implementation of 4-bit Ripple counter / 3-bit synchronous Up/Down counter.
- 6. Implementation of 4-bit shift registers using Flip flops. (SISO/ SIPO/PISO/PIPO).

	and the second	TOTAL PERIODS	75
COU	RSE OUTCOMES	BT MAPP	PED
At the	e end of this course, the students will be able to	(Highest Le	evel)
CO1	apply Boolean functions in digital design.	Apply (K3)	1.4
CO2	design and implement combinational circuits.	Apply (K3)	
CO3	design and implement synchronous sequential circuits.	Apply (K3)	
CO4	analyze the types of asynchronous sequential circuits.	Analyze (K	4)
CO5	classify memory devices and PLDs.	Understand	(K2)

TEXT BOOKS

1. M. Morris Mano and Michael D. Ciletti, 'Digital Design', Pearson, 6th Edition, 2018.

2. H. Charles Roth Jr, "Digital System Design using VHDL", Thomson / Brooks cole, 2015.

REFERENCES

- S. Salivahanan and S. Arivazhagan, "Digital Circuits and Design", 4th Edition, Vikas Publishing House Pvt.Ltd, New Delhi, 2012.
- John .M Yarbrough, "Digital Logic Applications and Design", Thomson Publications, New Delhi, 2007.
- 3. Charles H.Roth, "Fundamentals of Logic Design", 6th Edition, Thomson Publication Company, 2010.
- Donald P.Leach and Albert Paul Malvino, "Digital Principles and Applications", 5th edition, Tata McGraw Hill Publishing Company Limited, New Delhi, 2003.

CO-PO MAPPING :

Mapping of Course Outcomes (CO's) with Programme Outcomes (PO's) and Program Specific Outcomes (PSO's) (1/2/3 indicates the strength of correlation) 3 – Strong , 2 – Medium , 1 – Weak

col-				10.2			PO's				1.2		PSO's		
CO's	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	
CO1	3	1	2	-	1	-	-	-	1	1	-	2	2	2	
CO2	3	2	2	-	1		-	-	1	1	-	2	2	2	
CO3	3	2	2	- 1 - -	1	-	-	-	1	1	-	2	2	2	
CO4	3	2	2		1	-	-	-	1	1		2	2	2	
C05	3	1	2	-	1	-	-		1	1	-	2	2.	2	

	304 DATA STRUCTURES LAB	ORATORY		0	0	4	1
COUR	SE OBJECTIVES			111		12.5	Ī
To enal	ble the students to		10.1	- Inn		-	
1.	implement basic data structure using an array.	Latino pre-		116.00			
2.	implement linear data structures.	Carl Carlo	- 1		1		1
3.	apply various operations on non-linear data structures.	the second line		i ana	11		
4.	get familiarized to sorting and searching algorithms.	and the second second	and Re	1. 1910			
LIST (OF EXPERIMENTS		ETRATE	viela:	-	101	
1.	Array implementation of List ADT.		10 to 61	- net	1	8	
2.	Linked List Implementation of Singly and Doubly Link	ed List.					
3.	Array Implementation of Stack ADTs.						
4.	Implementation of Evaluating Postfix Expressions, Infin	to Postfix con	version.				
5.	Array Implementation of Queue ADTs.						
6.	Applications of Queue ADTs.						
7.	Implementation of Binary Search Trees.						
8.	Implementation of AVL Trees.						
9.	Implementation of Graph Traversal algorithms.						
9. 10.	Implementation of Graph Traversal algorithms. Implementation of Linear Search and Binary Search.						
9. 10. 11.	Implementation of Graph Traversal algorithms. Implementation of Linear Search and Binary Search. Implementation of Insertion Sort and Bubble Sort.						
9. 10. 11. 12.	Implementation of Graph Traversal algorithms. Implementation of Linear Search and Binary Search. Implementation of Insertion Sort and Bubble Sort. Implementation of Hashing-any one collision technique	s.					
9. 10. 11. 12.	Implementation of Graph Traversal algorithms. Implementation of Linear Search and Binary Search. Implementation of Insertion Sort and Bubble Sort. Implementation of Hashing-any one collision technique	s.	OTAL PER	TODS		6	0
9. 10. 11. 12.	Implementation of Graph Traversal algorithms. Implementation of Linear Search and Binary Search. Implementation of Insertion Sort and Bubble Sort. Implementation of Hashing-any one collision technique SE OUTCOMES	s.	OTAL PER	IODS BT M	IAP	PEI	i0
9. 10. 11. 12. COURS	Implementation of Graph Traversal algorithms. Implementation of Linear Search and Binary Search. Implementation of Insertion Sort and Bubble Sort. Implementation of Hashing-any one collision technique SE OUTCOMES and of this course, the students will be able to	s.	OTAL PER	IODS BT M (Highd	IAP	PEI Leve	i0)
9. 10. 11. 12. COURS At the e	Implementation of Graph Traversal algorithms. Implementation of Linear Search and Binary Search. Implementation of Insertion Sort and Bubble Sort. Implementation of Hashing-any one collision technique SE OUTCOMES and of this course, the students will be able to develop a basic data structure using an array.	s.	OTAL PER	IODS BT M (Highd Apply	IAP est 1 /ing	PPEI Leve g (K3	i0))
9. 10. 11. 12. COURS At the e CO1 CO2	Implementation of Graph Traversal algorithms. Implementation of Linear Search and Binary Search. Implementation of Insertion Sort and Bubble Sort. Implementation of Hashing–any one collision technique SE OUTCOMES and of this course, the students will be able to develop a basic data structure using an array. perform various operations in stacks, queues, linked line	s. I	OTAL PER	IODS BT M (Higho Apply Apply	IAF est l /ing	PPEI Leve g (K3 g (K3	10 1))
9. 10. 11. 12. COURS At the e CO1 CO2 CO3	Implementation of Graph Traversal algorithms. Implementation of Linear Search and Binary Search. Implementation of Insertion Sort and Bubble Sort. Implementation of Hashing–any one collision technique SE OUTCOMES and of this course, the students will be able to develop a basic data structure using an array. perform various operations in stacks, queues, linked list implement various operations on non-linear data struct	s. I st. ures.	OTAL PER	IODS BT M (Higho Apply Apply	IAP est l /ing /ing	PPEI Leve 3 (K3 3 (K3 3 (K3	10 1))
9. 10. 11. 12. COURS At the e CO1 CO2 CO3 CO4	Implementation of Graph Traversal algorithms. Implementation of Linear Search and Binary Search. Implementation of Insertion Sort and Bubble Sort. Implementation of Hashing-any one collision technique SE OUTCOMES and of this course, the students will be able to develop a basic data structure using an array. perform various operations in stacks, queues, linked list implement various operations on non-linear data struct apply searching and sorting techniques for given data.	s. I st. ures.	OTAL PER	IODS BT M (Higho Apply Apply Apply	IAP est l /ing /ing /ing	PPEI Leve 3 (K3 3 (K3 3 (K3 3 (K3	10 10 1)))

(1/2/3 indicates	strength of	f correlation)	3-Strong,	2-Medium, 1-Weak	
			C3/		

cos						Р	O's						PSO	O's
cos	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3	3	3	-	3	-		-	2	1	1	3	3	1
CO2	3	3	3	-	3		-	12	2	-	1	3	3	1
CO3	3	3	3	-	3	-	-	-	2	-	1	3	3	1
CO4	3	3	3	-	3	-	-		2	-	1	3	3	1

AD23.	305 OBJECT ORIENTED PROGRAMMING LABORATORY		0	0	4	2
COUR	RSE OBJECTIVES	340	184	5.6.3	2.50	25
`o ena	ble the students to	1000		dil.	kn.	
1.	build software development skills using java programming for real-world app	olicatio	ns.	a pr	1	
2.	understand and apply the concepts of classes, packages, and interfaces.	prox l	Gricen	al for		6
3.	implement exception handling and perform file processing.	natio se	orie!!	deo		1
4.	develop applications using generic programming and event handling.	52 10028		C 16	91	T.
IST	OF EXPERIMENTS	23021	1040	ei a	827	12
2. 3. 4. 5. 6.	 borve problems by using sequential search, ontary search, and quadratic sorth insertion). Develop stack and queue data structures using classes and objects. Write a Java program to demonstrate the concept of package. Solve the above problem using an interface. Implement exception handling and creation of user defined exceptions. Write a Java program that implements a multi-thread application. Write a program to perform file operations. 					
8.	Write a Java program to handle all mouse events and key events using Adapter	r classe	s.			
9.	Develop applications to demonstrate the features of generics classes.					
10.	. Develop applications using JavaFX controls, layouts and menus.					
11. 12.	 Create a Java application for Student Information System. It is used to store, ac aspects of student information such as student details, subjects, semesters, enror students, etc. Write a Java program that works as a simple calculator. Use a grid layout to a 	Iministo ollment rrange	er and detail buttor	mar s, gr ns fo	age ades r dig	all of gits
	and for the $+ - * / \%$ operations. Add a text field to display the result.		lease of the	-	20.10	
10	TOTAL	PERI	ODS		6	0
OUR	SE OUTCOMES end of this course, the students will be able to		BT M	(AP)	PED)

CO1	analyze software development skills for real-world applications.	Applying (K3)
CO2	investigate different methodologies to create application using classes, packages, and interfaces.	Applying (K3)
CO3	explore exception handling and perform file processing.	Applying (K3)
CO4	create applications using generic programming and event handling.	Applying (K3)

CO-PO MAPPING:

Mapping of Course Outcome (CO's) with Programme Outcomes (PO's) and Programme Specific Outcomes (PSO's)

COs		19		1.0	1	P	O's	2.1		, I			PS	PSO's	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	
CO1	3	3	3	-	3	-	-	-	2	1944	1	3	3		
CO2	3	3	3	-	3	-	-	-	2	1 -	1	3	3	-	
CO3	3	3	3	-	3			ad seattle	2	-	1	3	3	-	
CO4	3	3	3		3	INEERI	NG COLL	EGE	2		1	3	3	-	
					ANNA C	Box Artific Di	Approve ard of St ial Intelli ata Scie	udies gence &	See.	14) 14 14 8 14					

MAKKAL-6370

	3301	PROFESSIONAL DEVELOPMENT I	0	0	2	1
COL	RSE O	BJECTIVES		-		1
To en	nable stu	dents to		-		1
1	enhar to sur	ce and evaluate the student's potential strength, personality skills and r vive.	reduce	weakn	ess	
2	enhar	ce and develop the students behavioral, speaking and listening skills to	o face t	he inte	ervie	w.
3	solve	the quantitative aptitude problems and improve their problem-solving	skills.		7	
4	impro	we their reasoning skills to get placed in reputed companies.	inst.	jh o		
UNI	TI	SELF - UNDERSTANDING AND PERSONALITY ENHANCE SKILLS	EMEN	Т		7
Worl and I	kplace - Lateral T	Leadership Skills - Decision Making - Problem Solving - Goal Setting hinking, JAM Level - 1, Basic Resume Building Level – 1.	g - Criti	ical, S	trate	gic
UNI	пп	BEHAVIOURAL SKILLS, LISTENING AND SPEAKING SKIL	LS			7
Liste	ning an	d Hearing - Self Introduction - Group Discussion: Types and Impo	ortance	- Eva	aluati	g - ion
Liste Crite	ning an tria - Do IT III	d Hearing - Self Introduction - Group Discussion: Types and Impo 's and Don'ts of GD - GD Level-1.	ortance	- Eva	aluat	g - ion 8
Liste Crite UN	ening an eria - Do IT III	d Hearing - Self Introduction - Group Discussion: Types and Impo 's and Don'ts of GD - GD Level-1. QUANTITATIVE APTITUDE	ortance	- Eva	aluat	g - ion 8
Liste Crite UN Num - Are	ning an ria - Do IT III ber Syst ca - Prof	d Hearing - Self Introduction - Group Discussion: Types and Impo 's and Don'ts of GD - GD Level-1. QUANTITATIVE APTITUDE em - LCM and HCF - Simple Interest and Compound Interest - Average it and Loss.	ortance	- Eva	aluati Ciste	g - ion 8 rns
Liste Crite UN Num - Are UN	ning an ria - Do IT III ber Syst a - Prof IT IV	d Hearing - Self Introduction - Group Discussion: Types and Impo 's and Don'ts of GD - GD Level-1. QUANTITATIVE APTITUDE em - LCM and HCF - Simple Interest and Compound Interest - Average it and Loss. LOGICAL REASONING	ortance	- Eva	Ciste	g - ion 8 rns 8
Liste Crite UN Num - Are UN	ning an ria - Do IT III ber Syst ea - Prof IT IV cal Sequ	d Hearing - Self Introduction - Group Discussion: Types and Impo 's and Don'ts of GD - GD Level-1. QUANTITATIVE APTITUDE em - LCM and HCF - Simple Interest and Compound Interest - Average it and Loss. LOGICAL REASONING ence - Analogy - Classification - Causes and Effect - Making Judgmen	ortance e - Pipe	- Eva	Ciste	g - ion 8 rns 8
Liste Crite UN Num - Are UN Logie	ning an ria - Do IT III ber Syst ca - Prof IT IV cal Sequ	d Hearing - Self Introduction - Group Discussion: Types and Impo 's and Don'ts of GD - GD Level-1. QUANTITATIVE APTITUDE em - LCM and HCF - Simple Interest and Compound Interest - Average it and Loss. LOGICAL REASONING ence - Analogy - Classification - Causes and Effect - Making Judgmen TOTA	e - Pipe nt – Dir L PER	- Eva s and (Ciste	g - ion 8 rns 8 8 50
Liste Crite UN Num - Are UN Logie	ning an ria - Do IT III ber Syst ca - Prof IT IV cal Sequ	d Hearing - Self Introduction - Group Discussion: Types and Impo 's and Don'ts of GD - GD Level-1. QUANTITATIVE APTITUDE em - LCM and HCF - Simple Interest and Compound Interest - Average it and Loss. LOGICAL REASONING ence - Analogy - Classification - Causes and Effect - Making Judgmen TOTA	e - Pipe nt – Dir L PER	- Eva s and (rection IODS	Ciste	g - ion 8 rns 8 8 60 D
Liste Crite UN Num - Are UN Logic COU	ning an ria - Do IT III ber Syst a - Prof IT IV cal Sequ URSE O he end o	d Hearing - Self Introduction - Group Discussion: Types and Impo 's and Don'ts of GD - GD Level-1. QUANTITATIVE APTITUDE em - LCM and HCF - Simple Interest and Compound Interest - Average it and Loss. LOGICAL REASONING ence - Analogy - Classification - Causes and Effect - Making Judgmen TOTA	e - Pipe nt – Dir L PER B' (H	- Eva s and (rection IODS T MA ighest	Ciste	g - ion 8 rns 8 8 60 D 21)
Liste Crite UN Num - Are UN Logid COU At th	ning an ria - Do IT III ber Syst a - Prof IT IV cal Sequ URSE O he end o	d Hearing - Self Introduction - Group Discussion: Types and Impo s and Don'ts of GD - GD Level-1. QUANTITATIVE APTITUDE em - LCM and HCF - Simple Interest and Compound Interest - Average it and Loss. LOGICAL REASONING ence - Analogy - Classification - Causes and Effect - Making Judgmen TOTA UTCOMES f this course, the students will be able to e and analyze soft skills to improve the leadership skills.	e - Pipe nt – Dir L PER (H A	- Eva s and (rection IODS T MA ighest nalyzi	Ciste	g - ion 8 rns 8 8 60 D el) 2(4)
Liste Crite UN Num - Are UN Logid COI At th COI	ning an ria - Do IT III ber Syst a - Prof IT IV cal Sequ URSE O he end o defin	d Hearing - Self Introduction - Group Discussion: Types and Impo s and Don'ts of GD - GD Level-1. QUANTITATIVE APTITUDE em - LCM and HCF - Simple Interest and Compound Interest - Average it and Loss. LOGICAL REASONING ence - Analogy - Classification - Causes and Effect - Making Judgmen TOTA UTCOMES f this course, the students will be able to e and analyze soft skills to improve the leadership skills.	e - Pipe nt – Dir L PER (H A	- Eva s and (rection IODS T MA ighest nalyzi	Ciste	g - ion 8 rns 8 60 D 21) ((4) (3)
Liste Crite UN Num - Are UN Logid COI At th COI CO2	ning an ria - Do IT III ber Syst a - Prof IT IV cal Sequ URSE O he end o defin defin	d Hearing - Self Introduction - Group Discussion: Types and Impo 's and Don'ts of GD - GD Level-1. QUANTITATIVE APTITUDE em - LCM and HCF - Simple Interest and Compound Interest - Average it and Loss. LOGICAL REASONING ence - Analogy - Classification - Causes and Effect - Making Judgmen TOTA UTCOMES f this course, the students will be able to e and analyze soft skills to improve the leadership skills. onstrate the behavioral skills through various activities.	e - Pipe nt – Dir L PER (H A A	- Eva - Eva s and (rection IODS T MA ighest nalyzi .pplyin	Ciste	g - ion 8 8 7 7 8 8 8 8 60 D 2 1) (3) (3)

TEXTBOOKS

- 1. Agarwal, R.S. "Objective General English", S.Chand&Co.2021.
- 2. Agarwal, R.S. "Quantitative Aptitude", S.Chand&Co.2021.

REFERENCES

- 1. Abhijit Guha, "Quantitative Aptitude ", Tata-Mcgraw Hill.2023.
- Agarwal, R.S." A Modern approach to Verbal & Non Verbal Reasoning", S.Chand & Co Ltd, newdelhi.2021
- 3. Word Power Made Easy By Norman Lewis, Wr.Goyal Publications.2021.

CO/PO MAPPING:

Mapping of Course Outcome (CO's) with Programme Outcomes (PO's) (1/2/3 indicates strength of correlation) 3-Strong, 2-Medium, 1-Weak

COL					1	Progra	mme (Outcon	nes (PC)'s)				
CO's	P01	P02	P03	PO4	P05	P06	P07	P08	P09	P010	P011	P012	PSO1	PSO2
CO1	-	n det	ing a f	1-11	1		3	3	2	3	<u> </u>	3	1	1
CO2	-	/	-	-	-	-	2	3	2	3	-	3	2	• 1
CO3	3	2	2	2	-	-	1	35100. -	-	<u> 19</u> 11	-	1.9.9	1	2
CO4	2	3	3	2		3	3	1	19200	1	2	-	2	2

RING LULLE Approved BOARD OF STUDIES English AN TONOMO

Food, P	'har	ma)	
ocesses			
ocesses	•		
ocesses			
ind	j		
		_	-
		12	2
Binomia	il, P	oisso	on,
variable	es.		
	T	12	2
nt and id	dent	ically	, У
		13	2
utions f	for 1	near	Ι,
	11	12	2
ificatio	ns-	Lati	n
		12	2
C and	NP	cha	rts
IODS		6	0
BT M	IAP est L	PED)
	_		K2
Underst	and	ing (
Underst Analy	tand /zing	ng (g (K4	4)
Underst Analy Appl	tand yzing ying	ing (g (K4 ; (K3	4)
Underst Analy Appl Appl	tand yzing ying ying	ing (g (K4 ; (K3 ; (K3	4) i)
	inomia variable inear re t and id for sir ttions f ificatio C and IODS BT M	inomial, P variables. inear regres t and ident for single ttions for r ifications- C and NP IODS BT MAP	12 inomial, Poisso variables. 12 inear regression t and identically 12 inear regression t and identically 12 ifor single mean 12 ifications for mean 12 ifications- Latin 12 IODS 6 BT MAPPED

EXT BO	OKS										MC		AthEdit	ion
1. Mil	ton. J.	S. and	Arnold.	J.C., "I	ntroduc	tion to I	Probabi	lity and	Statisti	cs", Tat	a McGra	iw mili,	HILLUI	1011,
20	07.								a di					
2.Joh	nson. I	R.A. an	d Gupt	a. C.B.,	Miller	and Fre	eund's	Probabi	lity and	1 Statist	ics for E	ingineer	s", Pea	rson
Ec	lucatio	n, Asia	, 7thEdit	ion, 200)7.					ann 4		4.24	6-1-1	
REFERE	NCES			-	i de la composición de	de Car	- 2	et inse	heat		40.00	A Hore P		
1 D	evore	II'	Probat	oility an	d Statis	stics fo	r Engin	neering	and th	e Scien	ces", C	engage	Learni	ng,
I. D	ow De	alhi 8 th	Edition	2012										
IN	ew De			DIL M	Ivors S	I and	Ye K	"Probat	oility ar	nd Statis	tics for I	Engineer	s and	
2. W	/alpole	e. R.E.,	Myers.	К.п., IV.	Lycis. 5.	hE dition	2007							8
S	cientis	ts", Pea	irson Ec	lucation	Asia, 8	"Edition	1, 2007			and Sai	entiste"	3rd Edit	on.	1.00
3. R	oss, S.	M., "In	troduct	ion to P	robabili	ty and S	statistic	s for En	gineers	and Sci	enusis,	5 Luit	ion,	14
E	lsevier	, 2004.				545	n gha tai	1996			0.000		Duchlar	no of
4. S	piegel.	M.R	., Schil	ler. J.	and Sri	nivasan	. R.A	., "Scha	um's (Outline	of Theo	ry and	Problei	ns of
Р	robabi	lity and	l Statist	ics", Tat	ta McGi	raw Hill	Editio	n, 2004.	1673	196 31				
CO-PO	MAPP	ING:	pine of		144	(1.42) D	and m	1962-31	10210-1	e 1944 (politingth		10
		Mappi	ng of C	ourse C	utcom	e (CO's) with	Program	mme O	utcome	s (PO's)	and		
11				Pr	ogram	ne Spec	cific Ou	itcomes	(PSO ²	s) Aedium	. 1-Wea	k		15-UN
	Y -2-	(1/	2/3 indi	cates st	rength	OI COTT	D's) 5-500	ng, 2 1	Tearan		2.2.2.75	PSC)'s
COs		<u>г т</u>					-	0	0	10	11	12	1	2
	1	2	3	4	. 5	0	1	0	,	10		2	1	2
C01	3	3	3	3	-	2.4	-	eu -		-	-	3	1	2
CO2	3	2	3	3		1-1	-	- 4	- 5	19.21	0.7721	3	1	2
C03	3	3	3	2	2	- 1	-			-	1, -00	2	1	2
0.05	5		2	2			-	-		1 62.15	-20.00	2	1	2
CO4	3	3	2	2	-									-

-

_

-

_

.....

2

1

2

3

CO5

3

2

3

-

-

COURSE OBJECTIVES To enable the students to 1. understand the different techniques for problem solving and algorithm design. 2. analyze the importance of brute force and divide and conquer techniques. 3. apply dynamic programming and greedy techniques to solve problem. 4. learn the iterative design techniques for real problem. 4. acquire knowledge of backtracking and branch & bound techniques. 5. acquire knowledge of backtracking and branch & bound techniques. 12 Algorithm - Fundamentals of Algorithmic Problem Solving - Important Problem Types - Fundamentals of the Analysis of Algorithm Efficiency - Analysis Framework, Asymptotic Notations and its Properties; Mathematical Analysis of Recursive and Non - Recursive Relations (Selection Sort, Towers of Hanoi). 12 Brute Force - Sequential Search and String Matching, Closest-Pair and Convex-Hull Problems, Exhaustive Search: Travelling Salesman Problem, Knapsack Problem, Assignment Problem; Divide and Conquer methodology - Merge sort, Quick sort, Binary Search, Multiplication of Large Integers and Strassen's Matrix Multiplication, Closest Pair Problem and Convex Hull Problem. 12 Dynamic Programming - Computing a Binomial Coefficient, Knapsack Problem and Memory functions Optimal Binary Search Trees, Warshall's and Floyd's algorithms; Greedy Technique - Prim's algorithm, Kruskal's algorithm, Dijikstra's algorithm, Huffman trees and Codes. 12 UNIT II DYNAMIC PROGRAMMING AND GREEDY TECHNIQUE 12 Dynamic Prog	AD23	401	DESIGN AND ANALYSIS OF ALGORITHMS 3 1	0 4	
To enable the students to 1. understand the different techniques for problem solving and algorithm design. 2. analyze the importance of brute force and divide and conquer techniques. 3. apply dynamic programming and greedy techniques to solve problem. 4. learn the iterative design techniques for real problem. 5. acquire knowledge of backtracking and branch & bound techniques. UNIT I INTRODUCTION 12 Algorithm - Fundamentals of Algorithmic Problem Solving - Important Problem Types - Fundamentals of the Analysis of Algorithm Efficiency - Analysis Framework, Asymptotic Notations and its Properties; Mathematical Analysis of Recursive and Non - Recursive Relations (Selection Sort, Towers of Hanoi). UNIT II BRUTE FORCE AND DIVIDE-AND-CONQUER I2 Brute Force - Sequential Search and String Matching, Closest-Pair and Convex-Hull Problems, Exhaustive Search: Travelling Salesman Problem, Knapsack Problem. UNIT II Dynamic Programming - Computing a Binomial Coefficient, Knapsack Problem and Memory functions Optimal Binary Search Trees, Warshall's and Floyd's algorithms; Greedy Technique - Prim's algorithm. Multiplication, Closest Pair Problem and Convex Hull Problem. <td -="" a="" binomial="" coefficient,="" colspanaming="" computing="" knapsack="" p<="" td=""><td>COUR</td><td>RSE O</td><td>BJECTIVES</td><td>-</td></td>	<td>COUR</td> <td>RSE O</td> <td>BJECTIVES</td> <td>-</td>	COUR	RSE O	BJECTIVES	-
1. understand the different techniques for problem solving and algorithm design. 2. analyze the importance of brute force and divide and conquer techniques. 3. apply dynamic programming and greedy techniques to solve problem. 4. learn the iterative design techniques for real problem. 5. acquire knowledge of backtracking and branch & bound techniques. UNIT I INTRODUCTION 12 Algorithm - Fundamentals of Algorithmic Problem Solving - Important Problem Types - Fundamentals of the Analysis of Algorithm Efficiency - Analysis Framework, Asymptotic Notations and its Properties; Mathematical Analysis of Recursive and Non - Recursive Relations (Selection Sort, Towers of Hanoi). UNIT II BRUTE FORCE AND DIVIDE-AND-CONQUER 12 Brute Force - Sequential Search and String Matching, Closest-Pair and Convex-Hull Problems, Exhaustive Search: Travelling Salesman Problem, Knapsack Problem, Assignment Problem; Divide and Conquer methodology - Merge sort, Quick sort, Binary Search, Multiplication of Large Integers and Strassen's Matrix Multiplication, Closest Pair Problem and Convex Hull Problem. 12 Dynamic Programming - Computing a Binomial Coefficient, Knapsack Problem and Memory functions Optimal Binary Search Trees, Warshall's and Floyd's algorithms; Greedy Technique - Prin's algorithm Kruskal's algorithm, Dijikstra's algorithm, Huffman trees and Codes. 12 UNIT IVITERATIVE IMPROVEMENT AND LIMITATIONS OF ALGORITHM POWER<	To ena	ble the	e students to	1978	
2. analyze the importance of brute force and divide and conquer techniques. 3. apply dynamic programming and greedy techniques to solve problem. 4. learn the iterative design techniques for real problem. 5. acquire knowledge of backtracking and branch & bound techniques. UNIT I INTRODUCTION 12 Algorithm - Fundamentals of Algorithmic Problem Solving - Important Problem Types - Fundamentals of the Analysis of Algorithm Efficiency - Analysis Framework, Asymptotic Notations and its Properties. Mathematical Analysis of Recursive and Non - Recursive Relations (Selection Sort, Towers of Hanoi). 12 UNIT II BRUTE FORCE AND DIVIDE-AND-CONQUER 12 Brute Force - Sequential Search and String Matching, Closest-Pair and Convex-Hull Problems, Exhaustive Search: Travelling Salesman Problem, Knapsack Problem, Assignment Problem; Divide and Conquer methodology - Merge sort, Quick sort, Binary Search, Multiplication of Large Integers and Strassen's Matrix Multiplication, Closest Pair Problem and Convex Hull Problem. 12 Dynamic Programming - Computing a Binomial Coefficient, Knapsack Problem and Memory functions Optimal Binary Search Trees, Warshall's and Floyd's algorithms; Greedy Technique - Prim's algorithm Kruskal's algorithm, Dijikstra's algorithm, Huffman trees and Codes. 12 UNIT IV ITERATIVE IMPROVEMENT AND LIMITATIONS OF ALGORITHM POWER 12 The Simplex Method - The	1.	und	lerstand the different techniques for problem solving and algorithm design.	101	
3. apply dynamic programming and greedy techniques to solve problem. 4. learn the iterative design techniques for real problem. 5. acquire knowledge of backtracking and branch & bound techniques. UNIT I INTRODUCTION 12 Algorithm - Fundamentals of Algorithmic Problem Solving - Important Problem Types - Fundamentals of the Analysis of Algorithm Efficiency - Analysis Framework, Asymptotic Notations and its Properties Mathematical Analysis of Recursive and Non - Recursive Relations (Selection Sort, Towers of Hanoi). UNIT II BRUTE FORCE AND DIVIDE-AND-CONQUER 12 Brute Force - Sequential Search and String Matching, Closest-Pair and Convex-Hull Problems, Exhaustive Search: Travelling Salesman Problem, Knapsack Problem, Assignment Problem; Divide and Conquer methodology - Merge sort, Quick sort, Binary Search, Multiplication of Large Integers and Strassen's Matrix Multiplication, Closest Pair Problem and Convex Hull Problem. 12 Dynamic Programming - Computing a Binomial Coefficient, Knapsack Problem and Memory functions Optimal Binary Search Trees, Warshall's and Floyd's algorithms; Greedy Technique - Prim's algorithm. 12 The Simplex Method - The Maximum-Flow Problem - Maximum Matching in Bipartite Graphs - The Stable marriage Problem; Limitation of Algorithm Power - Lower Bound Arguments, Decision Trees, P, NP, NF Complete Problems. 12 Backtracking - n-Queen problem, Hamiltonian Circuit Problem, Subset Sum Problem; Branch and Bound - Assignment problem, Knapsack problem, Travelli	2.	ana	lyze the importance of brute force and divide and conquer techniques.		
4. learn the iterative design techniques for real problem. acquire knowledge of backtracking and branch & bound techniques. 5. acquire knowledge of backtracking and branch & bound techniques. 12 Algorithm - Fundamentals of Algorithmic Problem Solving - Important Problem Types - Fundamentals of the Analysis of Algorithm Efficiency - Analysis Framework, Asymptotic Notations and its Properties Mathematical Analysis of Recursive and Non - Recursive Relations (Selection Sort, Towers of Hanoi). 12 UNIT II BRUTE FORCE AND DIVIDE-AND-CONQUER 12 Brute Force - Sequential Search and String Matching, Closest-Pair and Convex-Hull Problems, Exhaustive Search: Travelling Salesman Problem, Knapsack Problem, Assignment Problem; Divide and Conquer methodology - Merge sort, Quick sort, Binary Search, Multiplication of Large Integers and Strassen's Matrix Multiplication, Closest Pair Problem and Convex Hull Problem. 12 Dynamic Programming - Computing a Binomial Coefficient, Knapsack Problem and Memory functions Optimal Binary Search Trees, Warshall's and Floyd's algorithms; Greedy Technique - Prim's algorithm Kruskal's algorithm, Dijikstra's algorithm, Huffman trees and Codes. 12 The Simplex Method - The Maximum-Flow Problem - Maximum Matching in Bipartite Graphs - The Stable marriage Problems. 12 UNIT IV COPING WITH THE LIMITATIONS OF ALGORITHM POWER 12 Backtracking - n-Queen problem, Hamiltonian Circuit Problem, Subset Sum Problem; Branch and Bound - Assignment problem, Knapsack problem, Travelling Salesman Problem; Approximation Algorithms for NP-hard Pr	3.	app	ly dynamic programming and greedy techniques to solve problem.		
5. acquire knowledge of backtracking and branch & bound techniques. UNIT I INTRODUCTION 12 Algorithm - Fundamentals of Algorithmic Problem Solving - Important Problem Types - Fundamentals of the Analysis of Algorithm Efficiency - Analysis Framework, Asymptotic Notations and its Properties. 12 Mathematical Analysis of Recursive and Non - Recursive Relations (Selection Sort, Towers of Hanoi). 12 UNIT II BRUTE FORCE AND DIVIDE-AND-CONQUER 12 Brute Force - Sequential Search and String Matching, Closest-Pair and Convex-Hull Problems, Exhaustive Search: Travelling Salesman Problem, Knapsack Problem, Assignment Problem; Divide and Conquer methodology - Merge sort, Quick sort, Binary Search, Multiplication of Large Integers and Strassen's Matrix Multiplication, Closest Pair Problem and Convex Hull Problem. 12 Dynamic Programming - Computing a Binomial Coefficient, Knapsack Problem and Memory functions Optimal Binary Search Trees, Warshall's and Floyd's algorithms; Greedy Technique - Prim's algorithm Kruskal's algorithm, Dijikstra's algorithm, Huffman trees and Codes. 12 UNIT IV ITERATIVE IMPROVEMENT AND LIMITATIONS OF ALGORITHM POWER 12 The Simplex Method - The Maximum-Flow Problem - Maximum Matching in Bipartite Graphs - The Stable marriage Problems. 12 UNIT IV COPING WITH THE LIMITATIONS OF ALGORITHM POWER 12 Backtracking - n-Queen problem, Hamiltonian Circuit Problem, Subset Sum Problem; Branch and Bound - Assignment problem, Knapsack problem, Tr	4.	lear	n the iterative design techniques for real problem.		
UNIT I INTRODUCTION 12 Algorithm - Fundamentals of Algorithmic Problem Solving - Important Problem Types - Fundamentals of the Analysis of Algorithm Efficiency - Analysis Framework, Asymptotic Notations and its Properties Mathematical Analysis of Recursive and Non - Recursive Relations (Selection Sort, Towers of Hanoi). UNIT II BRUTE FORCE AND DIVIDE-AND-CONQUER 12 Brute Force - Sequential Search and String Matching, Closest-Pair and Convex-Hull Problems, Exhaustive Search: Travelling Salesman Problem, Knapsack Problem, Assignment Problem; Divide and Conquer methodology - Merge sort, Quick sort, Binary Search, Multiplication of Large Integers and Strassen's Matrix Multiplication, Closest Pair Problem and Convex Hull Problem. 12 Dynamic Programming - Computing a Binomial Coefficient, Knapsack Problem and Memory functions 12 Optimal Binary Search Trees, Warshall's and Floyd's algorithms; Greedy Technique - Prim's algorithm. 12 The Simplex Method - The Maximum-Flow Problem - Maximum Matching in Bipartite Graphs - The Stable marriage Problem; Limitation of Algorithm Power - Lower Bound Arguments, Decision Trees, P, NP, NF Complete Problems. 12 Backtracking - n-Queen problem, Hamiltonian Circuit Problem, Subset Sum Problem; Branch and Bound - Assignment problem, Knapsack problem, Travelling Salesman Problem; Approximation Algorithms for NP-hard Problems - Traveling Salesman problem, Knapsack problem. 12	5.	acq	uire knowledge of backtracking and branch & bound techniques.	15.7	
Algorithm - Fundamentals of Algorithmic Problem Solving - Important Problem Types - Fundamentals of the Analysis of Algorithm Efficiency - Analysis Framework, Asymptotic Notations and its Properties Mathematical Analysis of Recursive and Non - Recursive Relations (Selection Sort, Towers of Hanoi). UNIT II BRUTE FORCE AND DIVIDE-AND-CONQUER 12 Brute Force - Sequential Search and String Matching, Closest-Pair and Convex-Hull Problems, Exhaustive Search: Travelling Salesman Problem, Knapsack Problem, Assignment Problem; Divide and Conquer methodology - Merge sort, Quick sort, Binary Search, Multiplication of Large Integers and Strassen's Matrix Multiplication, Closest Pair Problem and Convex Hull Problem. 12 Dynamic Programming - Computing a Binomial Coefficient, Knapsack Problem and Memory functions Optimal Binary Search Trees, Warshall's and Floyd's algorithms; Greedy Technique - Prim's algorithm. Kruskal's algorithm, Dijikstra's algorithm, Huffman trees and Codes. 12 DINIT IV ITERATIVE IMPROVEMENT AND LIMITATIONS OF ALGORITHM POWER 12 The Simplex Method - The Maximum-Flow Problem - Maximum Matching in Bipartite Graphs - The Stable marriage Problems. 12 UNIT V COPING WITH THE LIMITATIONS OF ALGORITHM POWER 12 Backtracking - n-Queen problem, Hamiltonian Circuit Problem, Subset Sum Problem; Branch and Bound - Assignment problem, Knapsack problem, Travelling Salesman Problem; Approximation Algorithms for NP-hard Problems - Traveling Salesman problem, Knapsack problem. 12	UNIT	I	INTRODUCTION	12	
Multiplication, Closest Pair Problem and Convex Hull Problem. 12 UNIT III DYNAMIC PROGRAMMING AND GREEDY TECHNIQUE 12 Dynamic Programming - Computing a Binomial Coefficient, Knapsack Problem and Memory functions Optimal Binary Search Trees, Warshall's and Floyd's algorithms; Greedy Technique - Prim's algorithm. Kruskal's algorithm, Dijikstra's algorithm, Huffman trees and Codes. UNIT IV ITERATIVE IMPROVEMENT AND LIMITATIONS OF ALGORITHM POWER 12 The Simplex Method - The Maximum-Flow Problem - Maximum Matching in Bipartite Graphs - The Stable marriage Problem; Limitation of Algorithm Power - Lower Bound Arguments, Decision Trees, P, NP, NF Complete Problems. 12 UNIT V COPING WITH THE LIMITATIONS OF ALGORITHM POWER 12 Backtracking - n-Queen problem, Hamiltonian Circuit Problem, Subset Sum Problem; Branch and Bound - Assignment problem, Knapsack problem, Travelling Salesman Problem; Approximation Algorithms for NP-hard Problems - Traveling Salesman problem, Knapsack problem. 60	Brute Searc metho	e Force ch: Tra odolog	e – Sequential Search and String Matching, Closest-Pair and Convex-Hull Problems, Exha avelling Salesman Problem, Knapsack Problem, Assignment Problem; Divide and Co by - Merge sort, Quick sort, Binary Search, Multiplication of Large Integers and Strassen's N	ustive nquer Aatrix	
Multiplication, Closest Pair Problem and Convex Hull Problem. 12 UNIT III DYNAMIC PROGRAMMING AND GREEDY TECHNIQUE 12 Dynamic Programming - Computing a Binomial Coefficient, Knapsack Problem and Memory functions Optimal Binary Search Trees, Warshall's and Floyd's algorithms; Greedy Technique - Prim's algorithm. Kruskal's algorithm, Dijikstra's algorithm, Huffman trees and Codes. UNIT IV ITERATIVE IMPROVEMENT AND LIMITATIONS OF ALGORITHM POWER 12 The Simplex Method - The Maximum-Flow Problem - Maximum Matching in Bipartite Graphs - The Stable marriage Problem; Limitation of Algorithm Power - Lower Bound Arguments, Decision Trees, P, NP, NF Complete Problems. 12 UNIT V COPING WITH THE LIMITATIONS OF ALGORITHM POWER 12 Backtracking - n-Queen problem, Hamiltonian Circuit Problem, Subset Sum Problem; Branch and Bound Assignment problem, Knapsack problem, Travelling Salesman Problem; Approximation Algorithms for NP-hard Problems - Traveling Salesman problem, Knapsack problem. 60	metho	odolog	y - Merge sort, Quick sort, Binary Search, Multiplication of Large Integers and Strassen's N	Aatrix	
UNIT III DYNAMIC PROGRAMMING AND GREEDY TECHNIQUE 12 Dynamic Programming - Computing a Binomial Coefficient, Knapsack Problem and Memory functions Optimal Binary Search Trees, Warshall's and Floyd's algorithms; Greedy Technique - Prim's algorithm Kruskal's algorithm, Dijikstra's algorithm, Huffman trees and Codes. ITERATIVE IMPROVEMENT AND LIMITATIONS OF ALGORITHM POWER 12 The Simplex Method - The Maximum-Flow Problem - Maximum Matching in Bipartite Graphs - The Stable marriage Problem; Limitation of Algorithm Power - Lower Bound Arguments, Decision Trees, P, NP, NF Complete Problems. 12 UNIT V COPING WITH THE LIMITATIONS OF ALGORITHM POWER 12 Backtracking - n-Queen problem, Hamiltonian Circuit Problem, Subset Sum Problem; Branch and Bound - Assignment problem, Knapsack problem, Travelling Salesman Problem; Approximation Algorithms for NP-hard Problems - Traveling Salesman problem. 60 TOTAL PERIODS 60	Multi	iplicati	on, Closest Pair Problem and Convex Hull Problem.		
Dynamic Programming - Computing a Binomial Coefficient, Knapsack Problem and Memory functions Optimal Binary Search Trees, Warshall's and Floyd's algorithms; Greedy Technique - Prim's algorithm Kruskal's algorithm, Dijikstra's algorithm, Huffman trees and Codes. UNIT IV ITERATIVE IMPROVEMENT AND LIMITATIONS OF ALGORITHM POWER 12 The Simplex Method - The Maximum-Flow Problem - Maximum Matching in Bipartite Graphs - The Stable marriage Problem; Limitation of Algorithm Power - Lower Bound Arguments, Decision Trees, P, NP, NF Complete Problems. 12 UNIT V COPING WITH THE LIMITATIONS OF ALGORITHM POWER 12 Backtracking - n-Queen problem, Hamiltonian Circuit Problem, Subset Sum Problem; Branch and Bound - Assignment problem, Knapsack problem, Travelling Salesman Problem; Approximation Algorithms for NP-hard Problems - Traveling Salesman problem. 10 TOTAL PERIODS 60	UNIT	ш	DYNAMIC PROGRAMMING AND GREEDY TECHNIQUE	12	
UNIT IV ITERATIVE IMPROVEMENT AND LIMITATIONS OF ALGORITHM POWER 12 The Simplex Method - The Maximum-Flow Problem - Maximum Matching in Bipartite Graphs - The Stable marriage Problem; Limitation of Algorithm Power - Lower Bound Arguments, Decision Trees, P, NP, NF Complete Problems. 12 UNIT V COPING WITH THE LIMITATIONS OF ALGORITHM POWER 12 Backtracking - n-Queen problem, Hamiltonian Circuit Problem, Subset Sum Problem; Branch and Bound - Assignment problem, Knapsack problem, Travelling Salesman Problem; Approximation Algorithms for NP-hard Problems - Traveling Salesman problem, Knapsack problem. 10 TOTAL PERIODS 60	Dyna Optin Krusł	mic Pi nal Bii kal's al	rogramming - Computing a Binomial Coefficient, Knapsack Problem and Memory fund nary Search Trees, Warshall's and Floyd's algorithms; Greedy Technique - Prim's algo lgorithm, Dijikstra's algorithm, Huffman trees and Codes.	tions, rithm,	
The Simplex Method - The Maximum-Flow Problem - Maximum Matching in Bipartite Graphs - The Stable marriage Problem; Limitation of Algorithm Power - Lower Bound Arguments, Decision Trees, P, NP, NF Complete Problems. UNIT V COPING WITH THE LIMITATIONS OF ALGORITHM POWER 12 Backtracking - n-Queen problem, Hamiltonian Circuit Problem, Subset Sum Problem; Branch and Bound - Assignment problem, Knapsack problem, Travelling Salesman Problem; Approximation Algorithms for NP-hard Problems - Traveling Salesman problem, Knapsack problem. 10	UNIT	IV	ITERATIVE IMPROVEMENT AND LIMITATIONS OF ALGORITHM POWER	12	
UNIT V COPING WITH THE LIMITATIONS OF ALGORITHM POWER 12 Backtracking - n-Queen problem, Hamiltonian Circuit Problem, Subset Sum Problem; Branch and Bound 12 Assignment problem, Knapsack problem, Travelling Salesman Problem; Approximation Algorithms for NP- 12 hard Problems - Traveling Salesman problem, Knapsack problem, Knapsack problem. 60	The S marrie Comp	Simple: age Problete Problete	x Method - The Maximum-Flow Problem - Maximum Matching in Bipartite Graphs - The roblem; Limitation of Algorithm Power - Lower Bound Arguments, Decision Trees, P, N roblems.	Stable P, NP	
Backtracking - n-Queen problem, Hamiltonian Circuit Problem, Subset Sum Problem; Branch and Bound Assignment problem, Knapsack problem, Travelling Salesman Problem; Approximation Algorithms for NP- hard Problems - Traveling Salesman problem, Knapsack problem. TOTAL PERIODS 60	UNIT	V	COPING WITH THE LIMITATIONS OF ALGORITHM POWER	12	
TOTAL PERIODS 60	Backt Assig hard I	trackin nment Probler	ng - n-Queen problem, Hamiltonian Circuit Problem, Subset Sum Problem; Branch and Bo problem, Knapsack problem, Travelling Salesman Problem; Approximation Algorithms for ms - Traveling Salesman problem, Knapsack problem.	ound - or NP-	
	-		TOTAL PERIODS	60	

COUR	SE OI	JTCON	/IES	1.11	WITISH	5.17	10 212	1315	Par se	0.50		BT M	IAPPE	D
At the e	end of	this cou	rse, the	students	will be	able to						(High	est Lev	el)
CO1	exar	nine the	e various	s framev	vorks fo	r algori	thmic d	lesign.			1	Apply	ying (K	3)
CO2	appl anal	y brute yze thei	force ar ir efficie	d divide	e-and-co	onquer t	echniqu	ues to va	arious p	roblems	and	Analy	zing (K	.4)
CO3	mak	e use of	f dynam	ic progra	amming	and gro	eedy tee	chnique	s to sol	ve proble	ems.	Apply	ying (K	3)
CO4	anal	yze the	problem	n using i	terative	design	techniq	jues.	a arrite	d at rais	1.1	Analy	zing (K	(4)
CO5	solv tech	e diffici niques.	ult comb	vinatoria	l proble	ms with	n backtı	racking	and bra	nch & b	ound	Analy	zing (K	(4)
TEXT	BOOF	KS		5015			1			- 2009	C. S. MAN	19.2.25		and a
1.	Anar Educa	ny Levi tion, 20	itin, "In)12.	troductio	on to th	ne Desig	gn and	Analys	is of A	lgorithn	ns", Thi	rd Editi	on, Pea	rson
2.	Thom Algor	as H.C ithms",	ormen, Third E	Charles dition, H	E.Leis HI Lea	serson, rning P	Ronald rivate L	I L. Ri Limited,	vest an 2012.	d Cliffe	ord Stei	n, "Intr	oductio	n to
REFEF	RENCI	ES		station.	- United	in Jan Ba	# 2 GC	the second second	STATE	1	A12 191-0	22018/12	- 22493	한테란석
1.	Alfred	V. Ah	o, John	Е. Норс	roft and	Jeffrey	D. Ull	man, "I	Data Str	uctures a	and Algo	orithms"	, Pears	on
2 minis	Educa	tion, Re	eprint 20	013.										
2.	Stev	en S. Sl	kiena, "	The Alg	orithm l	Design l	Manual	", Thire	l Editio	n, Spring	ger, 202	1.		
3.	Don	ald E. K	Knuth, "	The Art	of Com	puter P	rogram	ming",	Volume	es 1& 3 1	Pearson	Education	on, 201	6.
4.	Harsh	Bhasin	, "Algo	rithms L	esign a	nd Ana	lysis", (Uxford	Univers	ity Pres	s, 2016.	Hannes a	1.1.25	
CO-PO	MAP	PING:		in the second	Sealer 6	and in the	1999	Sola de	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	arder a	an supp	and and		and b
21	134	Mapp (1	oing of (/2/3 ind	Course Pi icates s	Outcon ogram trength	ne (CO' me Spe of corr	s) with cific O relation	n Progra utcome n) 3-Str	amme (s (PSO ong, 2-	Outcom 's) Mediun	es (PO's 1, 1-We	s) and ak		
	S. SARA.	Secolity.	Se agreene	an ar a	- Participation	Р	O's						PSO)'s
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2
C01	3	3	3	20-EN	1	6157	107-818	1	2		1	2	3	1
CO2	3	3	3	in Secto	1	1-01	17 F. 1	202.0	2	11 -053	1	2	3	1
CO3	3	3	3		1	3	- 1	100	2	inder ihr	1	2	3	1
CO4	3	3	3	-	1		1	-	2	-	1	2	3	1
CO5	3	3	3	-	1	3	-	241	2	-	1	2	3	1

AD23	402		OPERATING SYST	TEMS	3 0 0 3
COUR	RSE OB.	JECTIVES			
To ena	ble the s	tudents to			
1.	unders	tand the basic concept	ts and functions of operati	ing systems.	
2.	acquire	e knowledge about pro	ocesses, threads, schedulin	ng algorithms and concept of dead	ilocks.
3.	analyz	e various memory mai	nagement schemes.		
4.	learn f	ile system interfaces a	nd implementation proces	SS.	
5.	be fam	iliar with virtual mach	nines, clouds and IOT Op	perating Systems.	
UNIT	I	INTRODUCTION	TO OPERATING SYS	TEMS	9
Proce	esses, Co ls - Thre	ooperating processes, ading issues.	Inter process commun	ication; Threads - Overview, 1	Multi-threading
UNIT	п	PROCESS MANA	GEMENT AND DEAD	LOCK	9
deadle	ocks, De	adlock prevention, De	eadlock avoidance, Deadl	ock detection, Recovery from dea	idlock.
Main	Mama	Baskground	Susseine Continuous	momony allocation Daning	Competition
Segm	entation s, Thras	with paging; Virtual Ming.	Memory – Background, I	Demand paging, Page replacemen	t, Allocation of
UNIT	IV	FILE SYSTEMS			9
File-S sharin space	system I ig, Prote manage	nterface - File conce ection; File-System In ment, efficiency and p	ept, Access methods, D mplementation - Directo performance, recovery, No	irectory structure, File system a bry implementation, Allocation a etwork file systems.	mounting, File methods, Free-
UNIT	V	I/O SYSTEMS			
1/0 0.					9
Disk	/stems - attachm gement -	I/O Hardware - Appli ent - Disk schedulin RAID - stable storage	cation I/O interface - kern ng - Disk management e.	nel I/O subsystem - streams - Per - Storage Device Management	9 formance; - Swap-space

COUN	SE OU	тсом	IES		1.11		-fait	143.57	152		BT N	APPE	D
At the o	end of tl	nis cou	rse, the	students	will be	able to					(High	est Leve	el)
CO1	ider serv	ntify ap vices an	propriated and struct	te syster ure.	n calls f	or a give	en serv	ice using	g vario	ıs OS	Underst	anding ((K2)
CO2	app	ly diffe	erent me	thods fo	or proces	s synch	ronizat	ion and	handliı	ng deadlock.	Apj	oly (K3)	3
CO3	mal add	te use c ress der	of memo mand pa	ory man aging.	agement	strategi	es and	page rej	placem	ent policies to	Ana	lyze (K4)
CO4	app	ly vario	ous file	system o	concepts	for men	nory n	nanagem	ent.	gili sinders si	Ap	oly (K3)	king
CO5	mak	e use c	of memo	ory man	agement	strategi	es for	storing c	lata.	auto maiste	Underst	anding	(K2)
ГЕХТ	BOOK	S		A		in the second	1000	22504.00	1 april	And Control of Control of			
1.	Silbers 2018.	chatz,	Galvin,	and Ga	gne, "O	perating	Syste	m Conce	epts", 7	Fenth Edition	, Wiley In	dia Pvt	Ltd,
2.	Willian India, 2	n Stall 2018.	ings, O	perating	System	is: Inter	nals aı	nd Desig	n Prin	ciples, 9th Ec	lition Prer	ntice Ha	ll of
REFEI	RENCE	S	2						1.2	with addition of	a notice	and to be	
1.	Andrey	v S. Ta	nenbau	m, "Mo	dern Op	erating S	System	s", Four	th Edit	ion, Pearson	Education,	2014.	
2.	Harvey	M. De	eital, "C	perating	g Systen	ns", Thi	rd Edit	ion Pear	rson Eq	Jucation 200	7		
								ion, i ca	bon D.	incation, 200	19		
3.	Andrew Prentic	v S. Ta e Hall,	nnenba 3rd Ed	um & A ition, 20	lbert S. 06.	Woodhu	ıll, "O	perating	Systen	n Design and	Implemen	tation",	
3.	Andrew Prentic Gary J	v S. Ta e Hall, Nutt, "	nnenba 3rd Ed Operati	um & A ition, 20 ng Syst	lbert S. 06. ems", Pe	Woodhu earson/A	ıll, "O Addiso	perating n Wesley	Systen y, 3rd I	n Design and Edition, 2004.	Implemen	tation",	
3. 4. CO-PC	Andrey Prentic Gary J. MAPI	v S. Ta e Hall, Nutt, " 'ING:	nnenba 3rd Ed Operati	um & A ition, 20 ng Syst	lbert S. 06. ems", Po	Woodhu earson/A	ull, "O Addiso	perating n Wesley	Systen y, 3rd I	n Design and Edition, 2004.	Implemen	tation",	
3. 4. CO-PC	Andrey Prentic Gary J MAPI	v S. Ta e Hall, Nutt, " PING: Mapp (1/	nnenba 3rd Ed Operati ing of (/2/3 ind	um & A ition, 20 ng Syst Course Pr icates s	lbert S. 06. ems", Pe Outcom rogram	Woodhu earson/A ne (CO's me Spec of corr	all, "O Addiso s) with sific O elation	n Wesley Progra utcomes) 3-Stro	Systen y, 3rd I mme (s (PSO ong, 2-	n Design and Edition, 2004. Dutcomes (Po 's) Medium, 1-V	Implemen D's) and Veak	tation",	
3. 4. CO-PC	Andrey Prentic Gary J. MAPI	v S. Ta e Hall, Nutt, " PING: Mapp (1/	nnenba 3rd Ed Operati ing of (/2/3 ind	um & A ition, 20 ng Syst Course Pr icates s	lbert S. 06. ems", Pe Outcom rogram trength	Woodhu earson/A ne (CO's me Spec of corr P(all, "O Addiso s) with rific O elation D's	n Wesley Progra utcomes) 3-Stro	Systen y, 3rd I mme (s (PSO ong, 2-)	n Design and Edition, 2004. Dutcomes (Po 's) Medium, 1-V	Implemen D's) and Veak	tation",	D's
3. 4. CO-PC	Andrey Prentic Gary J. D MAPI	v S. Ta e Hall, Nutt, " PING: Mapp (1/ 2	nnenba 3rd Ed Operati ing of (/2/3 ind 3	um & A ition, 20 ng Syst Course Pi icates s	Ibert S. 06. ems", Pe Outcom rogram trength	Woodhu earson/A ne (CO's me Spec of corr PC 6	all, "O Addiso s) with sific O elation D's 7	n Wesley Progra utcomes) 3-Stro 8	Systen y, 3rd F mme (s (PSO ong, 2-) 9	n Design and Edition, 2004. Dutcomes (Po 's) Medium, 1-V	D's) and Veak	tation", PS0 1	D's
3. 4. CO-PC COs CO1	Andrey Prentic Gary J. MAPI	v S. Ta e Hall, Nutt, " PING: Mapp (1/ 2 3	nnenba 3rd Ed Operati ing of (/2/3 ind 3	um & A ition, 20 ng Syst Course Pr icates s 4	lbert S. 06. ems", Pe Outcom rogram trength	Woodhu earson/A ne (CO's me Spec of corr P(6 -	all, "O addiso s) with eific O elation D's 7	Progra utcomes) 3-Stro 8 -	Systen y, 3rd I mme (s (PSO ong, 2-) 9 1	n Design and Edition, 2004. Dutcomes (Po's) Medium, 1-V	D's) and Veak	PSC 1 2	D's 2 1
3. 4. CO-PC COs CO1 CO2	Andrey Prentic Gary J. MAPI 1 1 3	v S. Ta e Hall, Nutt, " PING: (1/ (1/ 2 3 3 3	nnenba 3rd Ed Operati ing of (/2/3 ind 3 - 3	um & A ition, 20 ng Syst Course Pi icates s 4 -	lbert S. 06. ems", Po Outcom rogram trength 5 3	Woodhu earson/A ne (CO's me Spec of corr P(6 -	all, "O addiso s) with cific O elation D's 7 -	Progra utcomes) 3-Stro 8 - -	Systen y, 3rd I mme (s (PSO ong, 2-) 9 1 1	n Design and Edition, 2004. Dutcomes (PO''s) Medium, 1-V 10 11 - - - -	D's) and Veak	PSC 1 2 2	D's 2 1 1
3. 4. CO-PC COs CO1 CO2 CO3	Andrey Prentic Gary J. MAPI 1 1 3 2	v S. Ta e Hall, Nutt, " PING: Mapp (1) 2 3 3 3 3	nnenba 3rd Ed Operati ing of (/2/3 ind 3 - 3 3	um & A ition, 20 ng Syst Course Pi icates s 4 - -	Ibert S. 106. ems", Po Outcom rogram trength 5 3 3 3	Woodhu earson/A ne (CO's me Spec of corr P(6 - - -	all, "O addiso s) with sific O elation D's 7 - -	Progra utcomes) 3-Stro 8 - -	Systen y, 3rd I mme (s (PSO ong, 2-) 9 1 1 1	n Design and Edition, 2004. Dutcomes (Pois) Medium, 1-V 10 11 - - - - - 1 - 1 - 1 - 1 - 1 - 1 - 1	D's) and Veak	tation", PS0 1 2 2 2 2	D's 2 1 1 1
3. 4. CO-PC COs CO1 CO2 CO3 CO4	Andrey Prentic Gary J. MAPI 1 1 3 2 2 2	v S. Ta e Hall, Nutt, " PING: Mapp (1) 2 3 3 3 3 3 3	nnenba 3rd Ed Operati ing of (/2/3 ind 3 - 3 3 3 3	um & A ition, 20 ng Syst Course Pr icates s 4 - - -	Ibert S. 06. ems", Pe Outcom rogram trength 5 3 3 3 3	Woodhu earson/A ne (CO's me Spec of corr PC 6 - - - -	all, "O addiso s) with cific O elation D's 7 - - -	Progra utcomes) 3-Stro 8 - - -	System y, 3rd I mme (s (PSO ong, 2-) 9 1 1 1 1 1	n Design and Edition, 2004. Dutcomes (P0's) Medium, 1-V 10 11 - - - - - 1 - 1 - 1 - 2	Implemen D's) and Veak 12 - 1 2 3	tation", PSC 1 2 2 2 2 2 2 2	D's 2 1 1 1 1

•

COUR	403	DATABASE MANAGEMENT SYSTEMS 3	0	0
and the second se	SE OB	JECTIVES		
Гo ena	ble the s	students to		10
1.	explor	e the fundamentals of DBMS and Relational Model.		-
2.	acquir	e the knowledge about basic, intermediate and advanced SQL.	2041	
3.	design	the database with Query Languages and E-R model.	11	
4.	apply	the normalization and understand the storage and File structure.		2.5
5.	impler	nent the query processing, optimization and Transaction.		
UNIT	I	INTRODUCTION		9
Langu Datab Datab	uages, R base Arc bases, Da	Relational Databases, Database Design, Data Storage and Querying, Transaction Ma chitecture, Database Users and Administrators; Relational Model - Structure of atabase Schema, Keys, Schema Diagrams, Relational Query Languages-Relational O	anago Rela Dperat	ement ationa ions.
UNIT	п	INTRODUCTION TO SQL AND INTERMEDIATE AND ADVANCED SQI	L	9
Types	and Cal		SQL	, Dau
UNIT	III	hemas, Authorization, Functions and Procedures, Triggers. DATABASE DESIGN	SQL	9
UNIT Relati Relati Attrib JNIT	III onal Q onal Ca utes in I	hemas, Authorization, Functions and Procedures, Triggers. DATABASE DESIGN uery Languages - The Relational Algebra, The Tuple Relational Calculus, The alculus; E-R Model - The Entity-Relationship Model, Constraints, Removing Entity Sets, Entity-Relationship Diagrams, Entity-Relationship Design Issues. RELATIONAL DATABASE DESIGN AND STORAGE AND FILE STRUCT	he D Redu	9 omaii indan E 9
UNIT Relati Attrib UNIT Relati using Struct Organ	in and Sec in a sec i	hemas, Authorization, Functions and Procedures, Triggers. DATABASE DESIGN uery Languages - The Relational Algebra, The Tuple Relational Calculus, The alculus; E-R Model - The Entity-Relationship Model, Constraints, Removing Entity Sets, Entity-Relationship Diagrams, Entity-Relationship Design Issues. RELATIONAL DATABASE DESIGN AND STORAGE AND FILE STRUCT atabase Design - Features of good relational designs, Functional dependency, Dec nal dependencies, Normal Forms, 1NF, 2NF, 3NF, BCNF, 4NF, 5NF; Storage Physical Storage Media, Magnetic Disk and Flash Storage, RAID, Tertiary Sto Organization of Records in Files, Data-Dictionary Storage.	he D Redu	9 omain o omain o omain
UNIT Relati Attrib UNIT Relati using Struct Organ	ind Sci ini onal Q onal Ca utes in I IV onal Da functio ure - P ization, V	hemas, Authorization, Functions and Procedures, Triggers. DATABASE DESIGN uery Languages - The Relational Algebra, The Tuple Relational Calculus, Thalculus; E-R Model - The Entity-Relationship Model, Constraints, Removing Entity Sets, Entity-Relationship Diagrams, Entity-Relationship Design Issues. RELATIONAL DATABASE DESIGN AND STORAGE AND FILE STRUCT Atabase Design - Features of good relational designs, Functional dependency, Dec Inal dependencies, Normal Forms, 1NF, 2NF, 3NF, BCNF, 4NF, 5NF; Storage Physical Storage Media, Magnetic Disk and Flash Storage, RAID, Tertiary Sto Organization of Records in Files, Data-Dictionary Storage. QUERY PROCESSING, QUERY OPTIMIZATION AND TRANSACTIONS	he D Redu	9 omain Indan E 9 osition d File c, File 9

2.4

COURS At the e	SE OUTCOMES and of this course, the students will be able to	BT MAPPED (Highest Level)
CO1	describe the database architecture and schema diagrams.	Understanding (K2)
CO2	explore Structured Query Language for creating databases.	Applying (K3)
CO3	design a database using Relational Query Languages and E-R model	Applying (K3)
CO4	choose the appropriate normal form for the given database.	Analysing (K4)
CO5	make use of query processing, optimization and Transaction for finding best performance.	Analysing (K4)

TEXT BOOKS

- Abraham Silberschatz, Henry F. Korth, S. Sudharshan, "Database System Concepts", Seventh Edition, McGraw Hill, 2020.
- 2. Ramez Elmasri, Shamkant B. Navathe, "Fundamentals of Database Systems", Seventh Edition, Pearson Education, 2017.

REFERENCES

- 1. Ramakrishna R. & Gehrke J, Database Management Systems, third edition, Mc-Graw Hill, 2022.
- Elmasri Ramez and Navathe Shamkant B., "Fundamental Database Systems", 7th Edition, Pearson Education, New Delhi, 2017.
- 3. Majumdar, A. K., and Bhattacharyya, P. Database Management Systems. McGraw-Hill, 2017.
- 4. C.J.Date, A.Kannan, S.Swamynathan, "An Introduction to Database Systems", Eighth Edition, Pearson Education, New Delhi, 2013.

(DOta) and

CO-PO MAPPING:

		Mapp (1	/2/3 ind	Lourse Pi licates s	outcon rogram trength	me Spe	cific O relation	utcomes a) 3-Stro	(PSO ong, 2-)	's) Medium	1, 1-Wea	ak		1000
						P	O's	ene, Data	18 nth				PSO	O's
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3	2	2	1	2		106.0	- 1	-		13,2 ×1	-	2	1
CO2	3	3	2	1	2	-	2	-		-	-	-	3	2
CO3	• 3	3	3	2	3		-	-	1	a n i bri	2	2	3	3
CO4	3	3	2	3	2	- 2 *	÷.,	-		-	1	-	3	2
CO5	3	3	3	3	3						2	2	3	3

MC23	402	HUMAN VALUES AND GENDER EQUALITY	2	0	0	0
COUR	SE OBJ	JECTIVES				1
o enal	ble the st	tudents to				
1.	define	e different types of human values and their impact on individual behaviour and	d socie	tal n	orm	s.
2.	apply naviga	principles of personal development such as self-confidence, self-discipline, a ate modern challenges effectively.	nd resi	lienc	e to	
3.	evalua	ate the role of values in shaping professional ethics, civic sense and global citi	izenshi	ip.		
4.	exami empor	ine the socio-economic factors influencing gender inequality and explore aver werment and advocacy.	nues fo	r		
5.	critica discrit	ally analyze prevalent issues and challenges faced by women, including gende mination, and cultural biases, and propose measures for their eradication.	er-base	d vic	lenc	ce,
UNIT	I	HUMAN VALUES			(5
Humi	ility, Co	ompassion, Gratitude. Peace, Justice, Freedom, Equality.		-		
UNIT Perso Sensi	II onal Dev tization	PERSONALITY DEVELOPMENT velopment - Introspection, Self-confidence, Self-discipline; Flexibility towards Gender Equality; Reliability; Unity; Modern Challenges	-Peer	· pre Adol	ssur	5 re - ent
UNIT Perso Sensi Emot value	II onal Dev tization ions an s; Self-	PERSONALITY DEVELOPMENT velopment - Introspection, Self-confidence, Self-discipline; Flexibility a towards Gender Equality; Reliability; Unity; Modern Challenges ad behavior - Comparison and Competition, Positive and Negative a improvement - Physical exercises, Meditation , Yoga.	-Peer s of a attitud	o pres Adol es; 1	ssur esc Fam	6 e - ent ily
UNIT Perso Sensi Emot value UNIT	II onal Dev tization ions an s; Self- III	PERSONALITY DEVELOPMENT velopment - Introspection, Self-confidence, Self-discipline; Flexibility a towards Gender Equality; Reliability; Unity; Modern Challenges ad behavior - Comparison and Competition, Positive and Negative a improvement - Physical exercises, Meditation, Yoga. VALUE EDUCATION TOWARDS NATIONAL AND GLOBAL DEVELOP	-Peer s of attitud	o pres Adol es; 1	ssur esc Fam	6
UNIT Perso Sensi Emot value UNIT Profes sense Social Value UNIT	II onal Dev tization ions an s; Self- III ssional V and Res I Respon s – Spiri IV	PERSONALITY DEVELOPMENT velopment - Introspection, Self-confidence, Self-discipline; Flexibility a towards Gender Equality; Reliability; Unity; Modern Challenges ad behavior - Comparison and Competition, Positive and Negative a improvement - Physical exercises, Meditation ,Yoga. VALUE EDUCATION TOWARDS NATIONAL AND GLOBAL DEVELOPI Values Integrity, Responsibility, Punctuality, Dedication - Perseverance - C sponsibility; Global Values - Computer Ethics, Moral Leadership, Code of C nsibility; Aesthetic values; National Integration and International understan ituality, thought process. GENDER EOUALITY	-Peer s of attitud MENT Compe	Adol es; 1 tence t; Co of Re	Fam () () () () () () () () () () () () ()	6 ent ily 6 vic rate ous 6
UNIT Perso Sensi Emot value UNIT Profes sense Social Value UNIT Gende	II onal Dev tization ions an s; Self- III ssional V and Res I Respon s – Spiri IV	PERSONALITY DEVELOPMENT velopment - Introspection, Self-confidence, Self-discipline; Flexibility a towards Gender Equality; Reliability; Unity; Modern Challenges ad behavior - Comparison and Competition, Positive and Negative a improvement - Physical exercises, Meditation ,Yoga. VALUE EDUCATION TOWARDS NATIONAL AND GLOBAL DEVELOPI Values Integrity, Responsibility, Punctuality, Dedication - Perseverance - C sponsibility; Global Values - Computer Ethics, Moral Leadership, Code of C nsibility; Aesthetic values; National Integration and International understar ituality, thought process. GENDER EQUALITY	• -Peer s of . attitud MENT Compe Conduc nding o	· pre Adol es; l tence t; Co of Ro	ssur lesc Fam rpor eligi	6 vic rate ous 6
UNIT Perso Sensi Emot value UNIT Profes sense Social Value UNIT Gende Healtl Careg Sustai	II enal Dev tization ions an s; Self- III ssional V and Res I Respon s – Spiri IV er Equal heare, H iving Re inable D	PERSONALITY DEVELOPMENT velopment - Introspection, Self-confidence, Self-discipline; Flexibility a towards Gender Equality; Reliability; Unity; Modern Challenges ad behavior - Comparison and Competition, Positive and Negative a improvement - Physical exercises, Meditation ,Yoga. VALUE EDUCATION TOWARDS NATIONAL AND GLOBAL DEVELOPI Values Integrity, Responsibility, Punctuality, Dedication - Perseverance - C sponsibility; Global Values - Computer Ethics, Moral Leadership, Code of C nsibility; Aesthetic values; National Integration and International understar ituality, thought process. GENDER EQUALITY ity - Definition, Empowerment, Economic Equality; Condition of Women in Political Representation, Gender-based Violence; Challenging Stereotype esponsibilities; Legal and Policy Reform; Cultural Shifts; Global Perspective; evelopment	-Peer s of 2 attitud MENT Compe Conduc ading of a India bes: P Male (· pre Adol es; 1 tence t; Co of Ro - Edu arent	ssur lesc Fam rpoi eligi icati al	5 e - ent ily 6 vic rate ous 6 ion, and sm;
UNIT Perso Sensi Emot value UNIT Profes sense Social Value UNIT Gende Healtl Careg Sustai	II inal Dev tization ions an s; Self- III ssional V and Res I Respon s – Spiri IV er Equal heare, I iving Re inable D V	PERSONALITY DEVELOPMENT velopment - Introspection, Self-confidence, Self-discipline; Flexibility a towards Gender Equality; Reliability; Unity; Modern Challenges a d behavior - Comparison and Competition, Positive and Negative a improvement - Physical exercises, Meditation ,Yoga. VALUE EDUCATION TOWARDS NATIONAL AND GLOBAL DEVELOPI Values Integrity, Responsibility, Punctuality, Dedication - Perseverance - C sponsibility; Global Values - Computer Ethics, Moral Leadership, Code of C ensibility; Aesthetic values; National Integration and International understar ituality, thought process. GENDER EQUALITY ity - Definition, Empowerment, Economic Equality; Condition of Women in Political Representation, Gender-based Violence; Challenging Stereotype esponsibilities; Legal and Policy Reform; Cultural Shifts; Global Perspective; evelopment WOMEN ISSUES AND CHALLENGES	A -Peer s of A attitud MENT Compe Conduc ading of a India pes: P Male 0	· pre Adol es; 1 tence t; Co of Re - Edu arent Chau	ssur lesc Fam rpoi eligi ucati al	6 vic rate ous 6 ion, and sm;
UNIT Perso Sensi Emot value UNIT Profes sense Social Value UNIT Gende Healtl Careg Sustai UNIT Wom relate teasin	II inal Dev tization ions an s; Self- III ssional V and Res I Respon s – Spiri IV er Equal heare, I iving Re inable D V en Issue ed abuse ng- Stall	PERSONALITY DEVELOPMENT velopment - Introspection, Self-confidence, Self-discipline; Flexibility a towards Gender Equality; Reliability; Unity; Modern Challenges ad behavior - Comparison and Competition, Positive and Negative a improvement - Physical exercises, Meditation ,Yoga. VALUE EDUCATION TOWARDS NATIONAL AND GLOBAL DEVELOPI Values Integrity, Responsibility, Punctuality, Dedication - Perseverance - C sponsibility; Global Values - Computer Ethics, Moral Leadership, Code of C nsibility; Aesthetic values; National Integration and International understar ituality, thought process. GENDER EQUALITY ity - Definition, Empowerment, Economic Equality; Condition of Women in Political Representation, Gender-based Violence; Challenging Stereotype esponsibilities; Legal and Policy Reform; Cultural Shifts; Global Perspective; evelopment WOMEN ISSUES AND CHALLENGES es and Challenges - female feticide, violence against women; Domestic e and deaths, Physical violence, Emotional abuse; Sexual assault; Hor king, e-stalking (cyber-crime).	 Peer s of attitud MENT Compe Conduct Conduct Compe Conduct Conduct Conduct Conduct Male 0 Conduct Co	· pre Adol es; 1 tence t; Co of Re arent Chau nce- illing	ssur lesc Fam rpoi eligi ucati al i dov g; E	6 vic rate ous 6 ion, and sm; 6 vry ve-

COURS	E OUTCOMES	BT MAPPED
At the er	nd of this course, the students will be able to	(Highest Level)
CO1	discuss the concept of human values and their significance in personal and societal development.	Understanding (K2)
CO2	demonstrate introspective skills to enhance personal growth and self- awareness.	Applying (K3)
CO3	recognize the importance of gender equality in promoting a just and equitable society.	Understanding (K2)
CO4	cultivate a sense of social responsibility and ethical conduct towards achieving national and global development.	Analyzing (K4)
CO5	analyse the challenges faced by women in various spheres and identify strategies for addressing them.	Analyzing (K4)

TEXT BOOKS

1. A Foundation Course in Human Values and Professional Ethics: Presenting a Universal Approach to Value Education - Through Self-exploration. New Delhi, 2016.

2. Aurther, John. Personality Development. Lotus Press, 2018.

REFERENCES

1. Joshi, Dhananjay. Value Education in Global Perspective. Lotus Press, 2014.

 Mahrotra, Mamta. Gender Inequality in India: Challenging Social Norms. Prabhat Books, 2015.

CO-PO MAPPING:

		Mapp (1	bing of $(1/2)/3$ ind	Course P licates s	Outcom rogram strength	ne (CO' me Spe of corr	s) with cific O relatior	Progr utcome 1) 3-Sti	ramme (es (PSO rong, 2-	Outcom 's) Medium	es (PO's 1, 1-Wea	s) and ak			
	PO's														
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	
CO1	-	1	-	1	1	1	2	3	2	1	1	3	1	2	
CO2	-	1		1	1	1	3	3	2	2	1	1	1	2	
CO3	<u>Au</u>	1	-	1	1	1	2	3	. 1	1	1	3	1	2	
CO4		1	-	.1	1	1	2	3	2	2	1	2	1	2	
CO5		1	-	1	1	1	1	3	2	2	1	3	1	2	

	404	COMPUTER NETWORKS	3	0	2	4
COUI	RSE OB	JECTIVES	11			
To ena	able the	students to				
1.	unders	tand the function of different layers of OSI model.				
2.	know a	about the components required to build different types of networks.		1		
3.	study t	he various routing protocols operation.				
4.	learn t	he flow control and congestion control algorithms.				
5.	acquir	e knowledge of application layer and its working principles.				
UNIT	'I	FUNDAMENTALS AND PHYSICAL LAYER			9	
Intro	duction	- Data communications, Networks, Network Types; Protocol Layering - The O	SI Mo	odel,	TCF	P/IP
proto	col suit;	Physical Layer: Overview of Data and signals; Transmission media; Switching				
UNIT	п	DATA LINK LAYER	- 1		9	1
Stand	lard Eth ces.	ernet, Fast Ethernet, Gigabit Ethernet; Wireless LANs - IEEE 802.11, Blue	tooth;	Co	nnect	ing
UNIT	ш	NETWORK LAYER			9	
proto UNIT	rol.	TD ANSDODT I AVED				
Dutie	es of Tra	I RANSPORT LAYER			9)
		nsport Layer; User datagram protocol (UDP); Transmission control protocol (1	ГСР) -	- Coi	9 nnect	tion
estab Servi	lishmen ce - Tec	IRANSPORT LAYER nsport Layer; User datagram protocol (UDP); Transmission control protocol (T t, Connection release; Congestion control; Congestion avoidance (DECbit, hniques to Improve QoS.	ГСР) - RED)	- Cor	9 nnect Iality) tion of
estab Servi UNIT	lishmen ce - Tec V	IRANSPORT LAYER nsport Layer; User datagram protocol (UDP); Transmission control protocol (T t, Connection release; Congestion control; Congestion avoidance (DECbit, hniques to Improve QoS. APPLICATION LAYER	ГСР) - RED)	· Cor ; Qu	9 nnect Jality 9	tion of
estab Servi UNIT Appl	lishmen ce - Tec V ication	IRANSPORT LAYER nsport Layer; User datagram protocol (UDP); Transmission control protocol (T t, Connection release; Congestion control; Congestion avoidance (DECbit, hniques to Improve QoS. APPLICATION LAYER Layer protocols: DNS – Email protocols (SMTP - POP3 - IMAP - MIME)	rcp) - RED)) – F1	- Coi ; Qu [P -	9 nnect nality 9 WV	tion of VW
estab Servi UNIT Appl (HTT	lishmen ce - Tec V ication	IRANSPORT LAYER insport Layer; User datagram protocol (UDP); Transmission control protocol (T t, Connection release; Congestion control; Congestion avoidance (DECbit, hniques to Improve QoS. APPLICATION LAYER Layer protocols: DNS – Email protocols (SMTP - POP3 - IMAP - MIME) PS) – SNMP	rcp) - RED)) – F1	- Coi ; Qu ; Qu	9 nnectuality 9 WV	tion of WW
estab Servi UNIT Appl (HTT	lishmen ce - Tec V ication 1 TP, HTT	IRANSPORT LAYER Insport Layer; User datagram protocol (UDP); Transmission control protocol (Techi, Connection release; Congestion control; Congestion avoidance (DECbit, Iniques to Improve QoS. APPLICATION LAYER Layer protocols: DNS – Email protocols (SMTP - POP3 - IMAP - MIME) PS) – SNMP TOTAL PERIO	rcp) - RED)) – FT ODS	- Coi ; Qu [P -	9 nnect ality 9 WV	of of WW
estab Servi UNIT Appl (HTT	lishmen ce - Tec V ication 1 TP, HTT	IRANSPORT LAYER nsport Layer; User datagram protocol (UDP); Transmission control protocol (T t, Connection release; Congestion control; Congestion avoidance (DECbit, hniques to Improve QoS. APPLICATION LAYER Layer protocols: DNS – Email protocols (SMTP - POP3 - IMAP - MIME) PS) – SNMP IST OF EXPERIMENTS	rcp) - red)) – F1 ODS	- Con ; Qu	9 nnect iality 9 WV	tion of VW 5

2

Applications using TCP sockets like:
 a) Echo client and echo server

- b) Chat

- 8. Write a HTTP web client program to download a web page using TCP sockets.
- 9. Configure a Web server, DHCP server and a DNS server all together in a single simulation through which IP have to be allocated for the host through DHCP server, Conversion of Canonical Name to IP address to be done by DNS server and Access to the webpage has to given by web server using Cisco Packet Tracer.

		TOTAL PERIODS	75
	COURSE OUTCOMES	BT N	IAPPED
	At the end of this course, the students will be able to	(High	est Level)
CO1	explain the basic layers and its functions in computer networks.	Apply	ying (K3)
CO2	demonstrate the knowledge of flow control algorithms at data link	a layer. Analy	zing (K4)
CO3	apply the suitable routing algorithms for the given network.	Appl	ying (K3)
CO4	develop a client/server application using TCP/UDP and design alg end-end communication.	gorithms for Appl	ying (K3)
CO5	implement the various application layer protocols.	Analy	zing (K4)
ГЕХТ І	BOOKS	DATE SPACE AVER	D 114
1	DI A D D (Commission and Naturalian with	TCD/ID Destagel Suite	Sixth Edition

- Behrouz A. Forouzan, Data Communications and Networking with TCP/IP Protocol Suite, Sixth Edition TMH, 2022.
- 2. James F. Kurose, Keith W. Ross, Computer Networking, A Top-Down Approach Featuring the Internet, Eighth Edition, Pearson Education, 2021.

REFERENCES

- 1. Larry L. Peterson, Bruce S. Davie, Computer Networks: A Systems Approach, Sixth Edition, Morgan Kaufmann Publishers Inc., 2019.
- 2. William Stallings, Data and Computer Communications, Tenth Edition, Pearson Education, 2014.
- 3. Nader F. Mir, Computer and Communication Networks, Second Edition, Prentice Hall, 2014.
- 4. Ying-Dar Lin, Ren-Hung Hwang, Fred Baker, "Computer Networks: An Open Source Approach", McGraw Hill, 2012.

CO-PO MAPPING:

170	0	Map	ping of 1/2/3 in	Course P dicates s	Outcon rogram strengtl	ne (CO me Spo 1 of cor	's) with ecific C relatio	h Progr Dutcom n) 3-St	amme es (PSC rong, 2-	Outcom)'s) -Mediur	nes (PO' n, 1-We	s) and ak	1 224	n new Salation
						P	O's						PS	O's
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	-	- 1	1	2	5 - 10-	10 (Take)		- 10		3	1	3	1. (.	3
CO2	2	3	3	2			-	-	1	3	1	3	2	3
CO3	3	3	2	2	s	44.4		1	1	3	1	3	2	3
CO4	3	3	3	2	-	-		1	1	3	1	3	2	3
CO5	3	3	3	2	3	2	-	2	-1	3	1	3	3	3

AD2340	05	-		OPE	RATIN	G SYS	TEMS	LABO	RATO	RY		0	0	4
COURS	SE OF	JECT	IVES											1
°o enab	le the	student	s to					1000					1	
1.	exec	ute shel	l progra	mming	and the	use of f	ilters in	the UN	VIX env	ironmen	nt.		1010	
2.	perfo	orm pro nunicat	ogramm ion, der	ning in monstrat	c usir e sched	ng syst uling al	em ca gorithm	lls and ns.	to pr	ocess o	creation	and ii	nter pr	oces
3.	imple	ement f	ile syste	em relate	ed system	m calls.					-	U-U-S	N.C.P	
4.	be fa	umiliar lock ave	with in oidance	nplemen	tation o	f CPU	schedu	ling alg	gorithms	s, page	replacer	ment alg	gorithm	s and
LIST O	FEX	PERIM	AENTS			1-1-1	THE LT	117 (1)	01010	10 1 191.0	i i conditi i	1		
1. 1 2. 3 3. 1 4. 1 5. 1 6. 1 7. 1 8. 1 9. 1	Basics Shell I Impler a) Impler Impler Impler c) Impler Impler	s of UN Program ment th FCFS ment th Seque ment Se ment Ba ment the FIFO ment Pa ment Sh	IX com nming. e follow S b) SJF e follow ential b) emaphor ankers A e follow b) LRU aging Te nared m	mands. ving CPI c) Prior ving file) Indexed res. Algorithm ving pag J c) Opti echnique emory a	U sched ity d) R allocati d c) Lin n for D e replac imal e of mer nd IPC.	uling al ound R on strat ked ead Loc ement a nory ma	gorithn obin egies. k Avoi llgorith anagem	ns. dance a ms. ent.	nd Dead	dlock Do	etection.			
10.1	Implei	ment Th	nread an	id Synch	ronizat	ion		_		то	CAL PE	RIODS		60
2 10	-	- 10		COL	RSE O	UTCO	MES	1				BT	MAPPI	CD
		Att	the end	of this c	ourse, t	he stude	ents wil	l be abl	e to		in Sing 1	(High	nest Lev	vel)
CO1	com	pare th	e perfor	mance of	of vario	us CPU	schedu	ling alg	gorithms	s for a		Appl	ying (K	(3)
CO2	imp	lement	the file	allocatio	on strate	egy.						Appl	ying (K	(3)
CO3	imp	lement	deadloc	k avoid	ance an	d detect	ion alg	orithms				Appl	ying (k	(3)
CO4	anal	lyse dif	ferent n	aging te	chnique	s for ef	ficient	memory	allocat	tion		Appl	ying (K	(3)
O-PO	MAP	PING:												0.5.1
		Mapp (1/	ing of (/2/3 ind	Course (Pi licates s	Outcom ogram trength	ne (CO' me Spe of corr	s) with cific O relation	Progra utcome a) 3-Str	amme (s (PSO ong, 2-1	Outcom 's) Mediun	es (PO'	s) and ak		8
COs						P	O's						PS	O's
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
201	3	3	3	2	3	-	-		-	2	1	3	2	1
CO2	3	3	3	1	2		-	-	-	2	2	3	2	1
CO4	3	2	3	1	2			2	2	2	2	3	2	1
004	5	1		-	Lin.	and the second second	IC COL	E Ca	4.00		-	1 2	-	1.
	arao V P		N		The state	Bos	Approve and of Stu ial Intelli	d udies gence 8	Oten					

AD234	06 DATABASE MANAGEMENT SY	STEMS LABORATORY	0	0	4
OURS	SE OBJECTIVES	TYPE OPERATION OF THE STATE		13	
o enab	le the students to	23V11	3968	à,	38
1.	explore and implement important commands in SQI	L with key and constraints.	and the	ni la	E.Int
2.	learn the usage of nested and joint queries.	in the second table and among on the	-D-ahr	1.75	
3.	acquire the knowledge of Triggers, Views and Curs	or.	0.000	i le de	1
4.	familiar with the use of a database Connectivity	the method of the product of the			1
JST C	DF EXPERIMENTS				-
1	Create a database table, add constraints (primary k	ev unique check Not null) inse	ert row	5 1117	odate
1.	create a database table, and constraints (primary K	inde	11 10	, սբ	uuu
•					
2.	Create a set of tables, add foreign key constraints an	a incorporate referential integrity.	(artis		
3.	Query the database tables using different 'where'	clause conditions and also imple	ment a	ggre	gate
	functions.				
4.	Query the database tables and explore sub queries.				
5.	Query the database tables and explore natural, equi	and outer joins.			
6.	Write user defined functions and stored procedures	in SQL.			
7.	Execute complex transactions and realize DCL and	TCL commands.			
8.	Write SQL Triggers for insert, delete, and update op	perations in a database table.			
9	Create View and index for database tables with a lar	ge number of records.			
10	Database Programming: Implicit and Explicit Curso	rs I contrasti la segundas l'estruct			
11	Database Connectivity with Front End Tools	Stend month/read IPC			
11.	Database Connectivity with Front End Tools.	TOTAL DEDI	ODS	Lisen.	6
6/3	BROBER SKINT	TOTAL FERI			- OC
	COURSE OUTCOMES	I be able to	BI MA	APP at Le	ED
COL	create SOL databases table with various key const	raints	Applyi	ng (K3)
CO2	construct simple and advanced Query Techniques	and Join operations	Applyi	ng (K3)
CO3	implement the Transaction Management and Trigg	ger Implementation	Applyi	ng (K3)
CO4	develop program with Integration and Database Pr	ogramming	Applyi	ng (K3)
O-PO	MAPPING:	ingetab heit stanbiorer daid lettik i	Saile		1
18	Mapping of Course Outcome (CO's) with	Programme Outcomes (PO's) a	ind	inti	4
	Programme Specific Or (1/2/3 indicates strength of completion	utcomes (PSO's)			
		y 3-bit ong, 2-meutum, 1- weak		D	so?

c0-						P	O's						PSC	
COs -	1	2	3	4	5	6	7	8	9	10	11	12	1	2
C01	3	2	2	1	2	-	-	-	-	-	1.04	-	3	2
CO2	3	3	2	2	3	-	-	-	-	-	-	-	3	3
CO3	3	3	3	3	3	-	12200	1 <u>2</u> 0	1	1		-	3	2
CO4	3	3	3	3	3	2	-	-	2	2	1	2	3	3

0.0	3401	PROFESSIONAL DEVELOPMENT II	0	0	2	1
COL	RSE O	BJECTIVES		511.1	1111	
Toe	nable stu	dents to		-		
1	enhand	ce their own behavioral skills to survive in corporate world.				
2	evalua	te their listening and speaking skills to face the interviews in a successf	`ul wa	ıy.	Ho	
3	solve t	he quantitative aptitude problems and improve their problem-solving sk	cills.			
4	improv	ve their reasoning skills to get placed in reputed companies				
UNI	TI	WRITING SKILLS				7
Busi Upd	ness con ate Resu	mmunication, Stress Management - Body Language - Dress Code - Se me Building II - JAM Level - 3.	elf In	trodu	ction	II -
UN	11 11	PRESENTATION SKILLS				'
Grou	ip Discu IT III	Skills; Mini Presentation in smaller groups - Situational Role Play; Factorsion Level II - JAM Level - 4. OUANTITATIVE APTITUDE	e to F	ace in	ntervi	ew,
Grou UN Simp Part	ap Discu IT III plificatio nership -	Skills; Mini Presentation in smaller groups - Situational Role Play; Fac- ssion Level II - JAM Level - 4. QUANTITATIVE APTITUDE on - Time, Speed and Distance - Trains - Boats and Streams - Rati Percentage.	e to F	ace in	portic	ew, 8 9n -
Grou UN Simp Part	ap Discu IT III plificationership - IT IV	Skills; Mini Presentation in smaller groups - Situational Role Play; Factorission Level II - JAM Level - 4. QUANTITATIVE APTITUDE on - Time, Speed and Distance - Trains - Boats and Streams - Rati Percentage. LOGICAL REASONING	e to F	ace in	portic	ew, 8 n - 8
Grou UN Simj Parti UN Seat - Sta	ap Discu IT III plificationership - IT IV ing Arra	Skills; Mini Presentation in smaller groups - Situational Role Play; Factorission Level II - JAM Level - 4. QUANTITATIVE APTITUDE on - Time, Speed and Distance - Trains - Boats and Streams - Rati Percentage. LOGICAL REASONING ungement - Arithmetic Reasoning - Character Puzzle - Syllogisms - Mata and Arguments.	e to F o and tchin,	d Pro	portic	8 8 8 0
Grou UN Simp Parti UN Seat - Sta	ap Discu IT III plificationership - IT IV ing Arra	Skills; Mini Presentation in smaller groups - Situational Role Play; Factorission Level II - JAM Level - 4. QUANTITATIVE APTITUDE on - Time, Speed and Distance - Trains - Boats and Streams - Rati Percentage. LOGICAL REASONING ingement - Arithmetic Reasoning - Character Puzzle - Syllogisms - Mata and Arguments.	e to F o and tchin	d Pro g - Do RIOD	portic efiniti	8 8 0n - 8 0ns 30
Grou UN Sim Part UN Seat - Sta CO At t	IT III plification nership - IT IV ing Arra ntements URSE O he end o	Skills; Mini Presentation in smaller groups - Situational Role Play; Factorission Level II - JAM Level - 4. QUANTITATIVE APTITUDE on - Time, Speed and Distance - Trains - Boats and Streams - Rati Percentage. LOGICAL REASONING ingement - Arithmetic Reasoning - Character Puzzle - Syllogisms - Mata and Arguments. OUTCOMES f this course, the students will be able to	e to F o and tchin L PEI E (F	ace in d Pro g - Do RIOD BT M. Highes	portice portice efiniti S : APPE	8 9 9 8 0 8 30 30 2 D el)
Grou UN Sim Part UN Seat - Sta CO At t	IT III plification nership - IT IV ing Arra ntements URSE O he end o	Skills; Mini Presentation in smaller groups - Situational Role Play; Factorission Level II - JAM Level - 4. QUANTITATIVE APTITUDE on - Time, Speed and Distance - Trains - Boats and Streams - Rati Percentage. LOGICAL REASONING ingement - Arithmetic Reasoning - Character Puzzle - Syllogisms - Ma and Arguments. VUTCOMES f this course, the students will be able to pret the personality development through various activities.	e to F o and tchin L PEI (F (F	ace in d Pro g - Do RIOD BT ML Highes	portice portice efiniti S : APPE at Leve	8 8 0 8 0 0 0 0 0 0 0 (K2
Grou UN Sim Parti UN Seat - Sta CO At t CO	IT III plification nership - IT IV ing Arra itements URSE O he end o	Skills; Mini Presentation in smaller groups - Situational Role Play; Factorission Level II - JAM Level - 4. QUANTITATIVE APTITUDE on - Time, Speed and Distance - Trains - Boats and Streams - Ration Percentage. LOGICAL REASONING and Arguments. OUTCOMES f this course, the students will be able to pret the personality development through various activities. nine speaking and Listening Skills to excel in their jobs.	e to F o and tchin E E (F Und A	ace in d Pro g - Do RIOD 3T M. Highes lerstar nalyz	ntervi portic efiniti S : APPE at Lev nding	ew, 8 90 - 8 00 - 8 00 - 8 00 - 8 00 - 8 00 - 8 00 - 9 00 - 9 0 - 9 0 - 9 0 - 9 0 - 9 0 - 9 0 - 9 0 - 9 0 - 9 0 - 9 0 - 9 0 - 9 - 9
Grou UN Sim Part UN Seat - Sta CO At t CO CO CO	IT III plification nership - IT IV ing Arra atements URSE O he end o l inter 2 exan 3 deve	Skills; Mini Presentation in smaller groups - Situational Role Play; Factorission Level II - JAM Level - 4. QUANTITATIVE APTITUDE on - Time, Speed and Distance - Trains - Boats and Streams - Rational Role Play; Percentage. LOGICAL REASONING ingement - Arithmetic Reasoning - Character Puzzle - Syllogisms - Maaand Arguments. TOTAI PUTCOMES f this course, the students will be able to pret the personality development through various activities. nine speaking and Listening Skills to excel in their jobs. lop the quantitative skills and analytical skills to face the interview	e to F o and tchin, L PEI (F (F Und A A	ace in d Pro g - Do RIOD BT M. Highes lerstar nalyz	ntervi portice efiniti S : APPE at Leven nding ing (K ng (K	ew, 8 8 0 7 8 30 50 (K2 (K2 (4) 3)

TEXTBOOKS

1. Agarwal, R.S. "Objective General English", S.Chand&Co., 2021.

2. Agarwal, R.S. "Quantitative Aptitude", S.Chand&Co., 2021.

REFERENCES

- 1. Abhijit Guha, "Quantitative Aptitude ", Tata-Mcgraw Hill., 2023.
- Agarwal, R.S." A Modern approach to Verbal & Non Verbal Reasoning", S.Chand & Co Ltd, newdelhi., 2021
- 3. Word Power Made Easy By Norman Lewis, Wr.Goyal Publications., 2021.

CO/PO MAPPING:

		Mapp (1/2/	oing of /3 indi	Course cates st	e Outcorrength	ome (C of cor	CO's) w relatio	n) 3-St	ogram trong,	me Ou 2-Medi	tcomes ium, 1-	(PO's Weak)	
COle		1.000			1	Progra	mme (Outcon	nes (PC	D's)				
cos	P01	P02	P03	PO4	P05	P06	P07	P08	P09	P010	P011	P012	PSO1	PSO2
CO1	-	-	140	-	-	-	3	3	2	3		3	1	1
CO2	-	-	- '	-	-	- 2	2	3	2	3	-	3	2	1
CO3	3	2	2	2	-	-	1		-	-	-	-	2	2
CO4	2	3	3	2	-	3	3	1		1	2	-	- 1	1

EERING COLT Approved BOARD OF STUDIES 4 English NAI ONOMO